
DTA - FH Aachen
Copyright 2023, Prof. Jörg Wollert (FH Aachen)

2023, Prof. Jörg Wollert (FH Aachen)

Jul 14, 2023

CONTENTS

1 Preamble 3

2 Digital Twin of a machine plant 5

3 Siemens NX MCD: Simple Robotic Arm Modelling 7
3.1 What you need . 7
3.2 Preparation . 7
3.3 Assignment . 7

4 Virtual Commissioning of a Production Line 11
4.1 Learning Outcome . 11
4.2 Task . 12
4.3 Preparation: Station IMS3 . 12
4.4 Station IMS3: Practical Assignment . 15
4.5 Preparation: Station IMS4 . 27
4.6 Station IMS4: Practical Assignment . 29
4.7 Preparation: Station IMS5 . 43
4.8 Station IMS5: Practical Assignment . 44
4.9 Preparation: Station IMS7 . 55
4.10 Station IMS7: Practical Assignment . 56
4.11 Summary . 68
4.12 Troubleshooting . 68

5 Operator Digital Twin for Assistance Systems 71
5.1 Short Introduction to Digital Twins . 71
5.2 Digital Twins of Operators . 72

6 OEE Evaluation with Python 73
6.1 Learning Outcome . 73
6.2 Task . 74
6.3 Setting up the work environment . 74
6.4 Understanding the work data . 79
6.5 Basic program structure . 80
6.6 Data preparation - Work data . 81
6.7 OEE calculation . 82
6.8 Visualization . 84
6.9 Data evaluation . 85
6.10 Problem Solving . 85

7 Digital Twin of a Robot Dog 87
7.1 Short Introduction to Digital Twins . 87

i

7.2 Creating a Digital Twin for a Robotic Dog . 88

8 Bittle 93
8.1 Learning Outcome . 93
8.2 Workspace Setup . 95
8.3 Hardware Setup . 102
8.4 Bittle Body . 104
8.5 Electrical and Controller Properties . 105
8.6 Calibration . 113
8.7 Controlling Bittle . 122
8.8 Extensible Modules . 128
8.9 Serial Commands Cheat Sheet . 137
8.10 Tasks . 137
8.11 Teach Bittle New Skills . 141
8.12 Controlling Bittle (Advanced) . 158
8.13 Controlling Bittle (Codecraft) . 163
8.14 Problem Solving . 171

9 Der Roboterhund Bittle 179
9.1 Learning Outcome . 179
9.2 Einführung . 179
9.3 Grundlagen von Robotern und Programmierung . 180
9.4 Programmierung . 183
9.5 Tasks . 191
9.6 Weitere Informationen zu Bittle . 196
9.7 Additional Tasks . 197

10 Arduino Basics 201
10.1 Introduction . 201
10.2 Embedded Systems . 202
10.3 Programming in C . 203
10.4 Arduino Programming . 208
10.5 Getting started with Arduino IDE . 210
10.6 Problem Solving . 211

11 TIA Portal Basics 213
11.1 Learning Outcome . 213
11.2 TIA Portal . 213

12 TIA OPC-UA 225
12.1 Configuring OPC-UA server in TIA Portal . 225
12.2 Creating OPC-UA Server Interface . 227

13 PLCSIM Advanced 229
13.1 Setting up simulation support in TIA Portal . 229
13.2 Launching PLCSIM Advanced and creating a PLC instance . 229

14 OPC-UA client 233
14.1 Prosys OPC-UA Browser . 233

15 PLC-Basics 235
15.1 Information processing . 236
15.2 PLC Programming (IEC 61131) . 237
15.3 Programming languages (IEC 61131) . 239
15.4 Sources . 249

ii

16 Siemens NX MCD 251
16.1 Learning Outcome . 251
16.2 Virtual Commissioning . 251
16.3 Mechatronics Concept Designer . 252
16.4 Summary . 268

17 Node Red Basics 269
17.1 Learning Outcome . 269
17.2 General information . 270
17.3 Nodes . 272
17.4 Flows . 273
17.5 Messages . 273
17.6 Information and Debug . 275
17.7 Palette Manager . 275
17.8 Functions . 275
17.9 Tasks . 278

18 Visual Studio Code Basics 283
18.1 Learning Outcome . 283
18.2 General information . 284
18.3 Gitlab Extension . 287
18.4 Arduino Extension . 292

19 Introduction to Version Control with Git 297
19.1 Learning Outcome . 297
19.2 Introduction . 298
19.3 Workflow . 298
19.4 Commits . 301
19.5 Git Branches . 303
19.6 Merging and Merge conflicts . 303
19.7 Tags . 303
19.8 Rebase . 305
19.9 Git Interface . 307
19.10 Git Commands . 307
19.11 Tasks . 308

iii

iv

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

This page contains the learning activities developed for the Digital Twin Academy by the FH Aachen University of
Applied Sciences.

CONTENTS 1

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

2 CONTENTS

CHAPTER

ONE

PREAMBLE

The following Workbook contains some special formatted parts to guide you through the Sprints and Tasks. Please
read these parts really carefully.

Note: This is a hint to get better solutions.

Warning: This is a warning.

Danger: Danger! Check carefully, you may damage hardware by doing something wrong.

This is source code.

Todo: This is a task to check your knowledge.

3

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

4 Chapter 1. Preamble

CHAPTER

TWO

DIGITAL TWIN OF A MACHINE PLANT

Today, digital twin concepts can be applied in a variety of different fields including the manufacturing sector. DTs can
for example help design assets or expand existing assets. DTs do that by allowing different applications access to the
assets’ information. One such application that could be DT-driven is virtual commissioning, which will be covered in
this course.

This course serves as a beginner’s guide and first step into virtual commissioning. The usage of software tools like
Siemens NX, PLCSIM Advanced, and TIA Portal is described step by step. Previous knowledge in automation tech-
nology is a plus, but not a requirement for this course.

5

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

6 Chapter 2. Digital Twin of a machine plant

CHAPTER

THREE

SIEMENS NX MCD: SIMPLE ROBOTIC ARM MODELLING

In this module you will model a simple robotic arm mechanism using Siemens NX.

3.1 What you need

3.1.1 Software

• Siemens NX version 1872 or newer (pre-installed on the lab PC)

3.1.2 Files

CAD files of the examples used in this module can be found here: https://fh-aachen.sciebo.de/s/AFAGrOi2zRFL1y7

For this task, the correct assembly can be found in simple_robotic_arm. Download all the parts from the
simple_robotic_arm file and open ASSEMBLY_simple_robotic_arm in Siemens NX.

3.2 Preparation

• Siemens NX MCD

3.3 Assignment

In this exercise a running simulation of a simple robotic arm mechanism will be created. The CAD files are available.
In Siemens NX MCD, different physical properties will be assigned to parts in order to reflect the function of the simple
station.

Note: When you first start NX, you may get an error saying there are no licenses available. Click “OK” and navigate
to File->Utilities->Select Bundles. In the window that opens, select and add both available bundles then click OK. This
solves the error.

7

https://fh-aachen.sciebo.de/s/AFAGrOi2zRFL1y7

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 3.1: Simple robotic arm functionality

3.3.1 Box and Conveyor Band

In the first steps, rigid and collision bodies will be assigned to parts the will interact with each other.

Todo:

• Assign a rigid body to the box and call it Box.

• Assign a collision body to the box and call it Box. Hint: to choose the entire box volume, right click on the box
and select Choose from list. Then select the entire box from the list.

• Assign collision body to the upper surface of the transporter band and call it Transport_band.

• Assign a transport surface to the upper surface of the transporter band and call it Transport_band. Specify the
correct direction vector and set the parallel velocity to 100 mm/s.

• Run the simulation and check if the box is transported on the transport band.

3.3.2 Simple Robotic Arm

Todo:

• Assign a rigid body to the robotic arm and call it Robot_arm.

• Assign a collision body to the robotic arm and call it Robot_arm.

• Assign a hinge joint to the robotic arm and call it “Robot_arm_HingeJoint”. Specify the direction vector and the
anchor point in a way that it rotates around the robotic joint.

• Assign a position control to the hinge joint object. Test different Destination and Speed settings.

• Finally set the destination to 0 and the speed to 500 °/s

8 Chapter 3. Siemens NX MCD: Simple Robotic Arm Modelling

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

3.3.3 Collision Sensor

Todo:

• Assign a collision sensor to the small cylinder on the transport band and give it a suitable name.

3.3.4 Conditions - Using Operations as if-Statements

Todo:

• Create an operation in the Sequence Editor. Choose the position control object as the Select Object choice.
Make a check next to position and give in a value of 70. Select the collision sensor object (from the) as the
condition object and specify that triggered == true. Name the operation Arm_out.

• Create a second operation. Choose the position control object as the Select Object choice. Make a check
next to position and give in a value of 0. Select the collision sensor object (from the Physics Navigator)
as the condition object and specify that triggered == false. Name the operation Arm_in.

Run the simulation and check if it achieves the desired behavior.

3.3. Assignment 9

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

10 Chapter 3. Siemens NX MCD: Simple Robotic Arm Modelling

CHAPTER

FOUR

VIRTUAL COMMISSIONING OF A PRODUCTION LINE

In this module, virtual commissioning is applied on the Lucas Nülle Industrial Mechatronic System (IMS) assembly
line.

4.1 Learning Outcome

4.1.1 Introduction

In the context of virtual commissiong, a physics-based model of the Lucas Nülle assembly line should be created and
used to verify the PLC control code.

Fig. 4.1: The Lucas Nülle assembly line modelled in Siemens NX

• You will carry out a virtual commissioning application.

• You will get to apply your knowledge of the basics of Siemens NX MCD.

• You will create a physics-based model.

• You will get familiar with the TIA Portal environment.

• You will be able to program Siemens PLCs using FBD, LAD, and SCL programmming languages.

• You will be able to simulate 15xx Siemens PLCs.

11

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

4.1.2 Requirements

• PLC-Basics

• TIA Portal Basics

• PLCSIM Advanced

• TIA OPC-UA

• Siemens NX MCD

• OPC-UA client

4.1.3 What you need

Software

• Siemens NX version 1872 or newer

• TIA Portal V15 or newer

• PLCSIM Advanced V2.0 or newer

• CAD files of the respective IMS station

Files

CAD files of the IMS stations of the practical assignment as well as for the examples used can be found here: https:
//fh-aachen.sciebo.de/s/IEPUWHYIDWIKSZX

4.2 Task

The goal of the IMS assembly line is to assemble a product that consists of three parts shown in the following figure.
Different station in the assembly line are responsible for mounting different parts of the product or handling the end
product.

The end product consists of a top-part, a bottom-part and a bolt that connects both parts.

The following sections will handle each IMS station. The task is to build a kinematic model in NX MCD and write
a control code in TIA Portal for each station. The control code should uploaded to a simulated PLC and an OPC-UA
connection should be established between the PLC and the kinematic model.

4.3 Preparation: Station IMS3

4.3.1 Goal

• To get to know the structure and functionality of the IMS3 station

12 Chapter 4. Virtual Commissioning of a Production Line

https://fh-aachen.sciebo.de/s/IEPUWHYIDWIKSZX
https://fh-aachen.sciebo.de/s/IEPUWHYIDWIKSZX

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.2: The end product

4.3.2 Task

The following questions/task will help you get familiar with the functionality of the station.

• Identify each of the components highlighted in the following figure and their respective function. Are they sensors
or actuators? Would they be defined as inputs or as outputs in a PLC program?

• Describe or outline in a sketch the process of the station.

• Sketch a state machine diagram to describe the functionality of the station.

Siemens NX MCD

• To which elements should a rigid body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a collision body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a joint be assigned in Siemens NX MCD? What type of joints are required to model
this station’s behaviour? Is specifying both attachment object and base object required?

• For which objects should a position control be created? (hint: position controls are created to manipulate the
position of joints)

• Which signals should be created inside Siemens NX MCD? What is the function of each signal?

• Which operations should be created? Describe the function of each operation.

4.3. Preparation: Station IMS3 13

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

14 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

PLC Program

• Which inputs and outputs should be defined in the PLC program?

4.4 Station IMS3: Practical Assignment

4.4.1 Goal

• To create a physics-based model of the IMS3 station

• To implement the state machine of IMS3 in a TIA Portal program

• To control the physics model with the created state machine program via OPC UA

4.4.2 IMS3 Station Functionality

The purpose of the IMS3 station is to mount the base part on the workpiece carrier.

The station has a few sensors and actuators, shown in the following figure.

Note: The guiding magazine in the above figures is blinded out, however, the active collision surfaces assigned to it
are shown in pink.

4.4.3 The Virtual Layer - Mechatronics Concept Designer

Physical properties should be assigned to different parts of the IMS3 station. Open the assembly file called
ASSEMBLY_IMS3.prt in Siemens NX and navigate to the Mechatronics Concept Designer application.

Base part and workpiece carrier

The base part (the part being mounted) and the workpiece carrier already have rigid body and collision bodies assigned
to them. These objects are assigned on the single part’s level. To see the objects, double click on the respective part in
the Assembly Navigator window and navigate to the Physics Navigator window.

Note: Definition of collisions: Two objects collide when they get in contact with and exert forces onto each other.
Collisions are part of the station’s functionality. In the context of the simulation, collisions do not refer to accidents.

Rigid and collision bodies

Note: When assigning collision bodies to parts, only sides/areas of the part that will undergo collision during the
simulation should be chosen. Avoid defining the entire part as a collision body, because it increases the complexity of
the body and unnecessarily slows down the simulation.

Note: When assigning collision bodies to parts, try to choose simple geometry (box, cylinder, sphere, area etc.) if
complicated geometry (mesh) is not crucial for the physical behaviour of the part.

4.4. Station IMS3: Practical Assignment 15

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.3: Sensors and actuators on the IMS3 station

16 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.4: The station’s functionality

Fig. 4.5: An example of collision body assignment. Collision surfaces are shown in pink. The upper part has a simpli-
fied geometry and surfaces on the part that will not undergo collision were not chosen, which reduces the complexity.

4.4. Station IMS3: Practical Assignment 17

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: Assign collision bodies to the magazine surfaces that store the parts and along which the parts fall during the
separation process. These surfaced keep the parts in place and guide the parts during the separation process. Assign
other collision bodies to the left and right side areas for the conveyor belt. These areas help guide the carrier along the
conveyor belt.

Conveyor belt

To simulate a conveyor belt, a rectangular surface will be used as a Transport surface. The band itself will be
blinded out while the simulation is running.

Todo: Assign a Transport surface to the part 200213_TransportflaecheDUMMY. Do that on the
Entire_Transport_Band level (double-click on Entire_Transport_Band from the Assembly Navigator to enter
that assembly’s level).

Mounting mechanism - latches

Rigid and collision bodies

A latch prevents the current part from falling and separates parts from the magazine when the mechanism is triggered.
Assign a rigid and collision body to the latch. Use the option mesh for the collision body.

Fig. 4.6: A latch is used for the separation process.

18 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Note: Assign physical properties to the latches on the LM9680_Vereinzeln_SE assembly level. Can mesh be
avoided? Try using a simplified collision geometry for the parts of the latch that actually collide.

Joint

The latch should be allowed to rotate around the bolt on which it is mounted.

Todo: Assign a hinge joint to the latche. Specify the axis vector and the anchor point around which the latche
will rotate. Because the base of the joint (i.e., the rest of the assembly) will not be moving, the base object can be left
unassigned. Give the joint a clear name.

Angular Spring Joint

The latch ‘latches’ back to its original position through an angular spring joint (also known as a simple torsion spring).
Assign an Angular Spring Joint to the latche. Set the spring constant to 20 N.mm/°, damping to 0.1 N.mm.s/°,
and relaxed position to 30° away from up-straight adjustment. The following figure shows the angular position of the
latch. In a relaxed position (if there were no cylinder to collide with the latch), the latch would be at a 30° angle to the
vertical axis. With the cylinder touching the latch, the 30° is never reached. The resulting new angle (marked in blue)
is not relevant to setting the parameters of the Angular Spring Joints.

Note: To check if the given parameters reflect the intented behaviour, one can run the simulation and see how the
latches will rest. Always run the simulation on the top most hierarchy level i.e., in the IMS3 assembly and not in a
sub-assembly.

Danger: Running the simulation in a sub-assembly might be handy, but it leads to an OPC UA communication
bug. Avoid running the simulation unless its in the top most assembly level. If OPC UA communication is not
working, see the troubleshooting section on how to fix it.

The angular position of the latche will be physically controlled by the latch cylinder. As the cylinder phyically pushes
onto the latche, it induces the separating motion for the bottom parts magazined in the part tunnel. As the cylinder
retracts back, the latch latches back to its original position under the effect of the torsion springs.

Mounting Mechanism - Cylinders (Latch Cylinders and Stopper Cylinder)

A cylinder is used to push the latch and to perform the separation mechanism. When the cylinder is retracted, the latch
swings back to its original positions through a torsion spring attached to it.

Note: The torsion spring is not shown in the CAD Model.

Rigid and collision bodies

Todo: Assign rigid and collision bodies to the cylinder parts.

Note: When assigning rigid bodies to part, a few parts can be selected together and defined as one colelctive rigid
body. This should be done if those parts will always undergo the same motion together. In the case of the stopper

4.4. Station IMS3: Practical Assignment 19

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.7: Latch positioning with contact to the cylinder

20 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.8: A cylinder is used to push the latch. Another cylinder is used to stop the workpiece carrier.

4.4. Station IMS3: Practical Assignment 21

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

cylinder, the cylinder itself but also the attached rubber object around it can be selected together.

Joints

Each cylinder should be constrained in all directions but one. Since every rod will only be either driven out or in, a
sliding joint should be assigned to each cylinder.

Todo: Assign sliding joints to each cylinder.

Note: As an attachment object, the rods should be chosen. Becasue the housing of the cylinders will not move during
the simulation, the base object can be left unselected. Selecting the housing of the cylinders as the base object is in this
case optional.

Note: Make sure to name each of the joints appropriately. For example: Cylinder_SlidingJoint, and
Stopper_SlidingJoint

Note: Define a lower limit of 0 and an upper limit of 10. This prevents the physical object of wandering beyond those
limits.

Position Control

To control the position of the object on the sliding joint, position controls have to be assigned to the sliding joint objects.

Todo: Create position controls and assign them to each of the sliding objects.

Note: Name the position controls appropriately. For example: Cylinder_PositionControl, and
Stopper_PositionControl

Signals

In order to, in turn, control those position controls through boolean variables from the PLC program later (the goal),
one should create signals in MCD and name them appropriately. For example: bStopper_down and bSwings_open.

Note: Only one signal can be responsible for triggering both latches. Therefore, do not create two signals for the two
latches, but create one signal to control both of them.

Signal Name Signal Function
bStopper_down sets the stopper’s position control position to 5mm
bSwing_open sets the latch’s position control position to 5mm

Todo: Create 2 boolean signals in MCD for the position controls of the cylinders. Be sure to define the signal as an
Inputs, since they are inputs from MCD’s perspective.

22 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Note: Do not link the signals to any runtime variables. These signals will trigger opertations later.

Note: You can create a symbol table for the all of those signals and call it PLCSIM_Advanced. Symbol tables are a
good way to arrange and organize signals that are related together. Since these signals will communicate with PLCSIM
Advanced, such a name for the symbol table provides clarity.

Operations

Operations are like if-statements in the MCD simulation. They can be used to trigger something in the simulation if an
external (or internal) condition is met.

Todo: Create an operation to send the stopper cylinder down. Call it Stopper_down_operation for clarity.

Note: Operations can be found in the Sequence Editor menu on the left.

The selected physics object of the operation is the stopper’s position control Stopper_PositionControl. The run-
time parameter selected is the position, because this is the parameter to be manipulated by the operation. The new
value is inserted in the Value column. Under Condition, the condition object selected is the signal bStopper_down.
The if-value of the signal should be set to true.

The equivalent in C++ would be:

if(bStopper_down == true) {stopper_sliding_position = 5;}

Todo: Create an additional operation that would set the value of Stopper_PositionControl to 0 mm if
bStopper_down is false. Call the operation Stopper_up_operation.

Todo: Create 2 more operations to control the latch cylinder: Use bSwings_open as the boolean condition-variable
for these operations.

Todo: Create a boolean signal and use an operation to turn the conveyor belt on and off.

Sensing Mechanism - Entry and Exit Sensors

Collision Sensor

The IMS3 has entry and exit sensors at the start and end of the conveyor belt (see section on IMS3 Station Functionality).
These two sensors will be simulated as two small cubes with collision sensor properties.

Create a new block in mechanical concept under the Home tab. Give the block the dimensions of 10mm x 10mm
x 10mm. Under the Assemblies tab, click on Create New to create a new model. Name the model something appro-
priate, like end_limit_switch_dummy and click OK. To select the block just created, navigate to Part Navigator
on the left-side menu and choose the block that was just created. Now the block is a model and can be seen in the
Assembly Navigator. Choose Move Component under the Assemblies tab and move the new block to where the
sensor is supposed to be.

4.4. Station IMS3: Practical Assignment 23

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.9: An operation to send the stopper’s sliding joint to position 5mm if the signal bStopper_down is true.

24 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Note: When moving an object, clicking on Specify Orientation will enable you to drag on the three axis to move the
object.

Now that the dummy-sensor is in place on the conveyor belt. Assign a collision sensor to it. Be sure to call the collision
sensor something appropriate, like End_limit_switch_right.

Signal

For the dummy sensor to send its reading to the PLC, a signal should be created.

Todo: Create a boolean signal and connect it with a runtime parameter. The physics object selected should be the
End_limit_switch_right object. Be sure to define the signal as an Output, since it is an output from MCD’s
perspective.

Note: It is important to give the signal a clear name. For example: bEnd_limit_switch_right. Where b in he
beginning stands for boolean.

The entry sensor is done for now. Later, End_limit_switch_right will be mapped to a PLC signal with the exact
same name.

Todo: Go through the same steps again and create a second sensor to detect the carrier’s exit. Call the new sensor
signal bEnd_limit_switch_left.

4.4.4 The Physical Layer – PLC Program

A program to control the IMS3 station can be found in the downloads. In this module, a PLC will be simulated to
control the station.

TIA Portal

The following figure shows a state machine diagram for the IMS3 station. This state machine is implemented in the
program.

Todo: Open the program in TIA Portal.

Note: Outputs of the MCD Simulation are inputs of the IMS3 function block, and vice versa. Use the same exact names
that are used in the variables in the IMS3 function block in the MCD simulation also. This allows for auto-mapping
later.

4.4. Station IMS3: Practical Assignment 25

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.10: A state machine diagram for the IMS3 station’s functionality.

Fig. 4.11: Variables of the IMS3 function block

26 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

PLCSIM Advanced

Todo: Start PLCSIM Advanced and start a PLC simulation.

Note: Make sure the PLC simulated has the same name as the PLC in the TIA Portal program.

Note: Make sure PLCSIM Virtual Eth. Adapter is selected.

In TIA Portal, compile your program and upload it to the simulated PLC.

4.4.5 Controlling the MCD Application using the PLC Program

Todo: Make sure an OPC UA server is configured in the PLC program and connect to it in MCD. When including vari-
ables from the PLC program through OPC UA, choose the variables that you need to control the simulated production
station.

Todo: In the Signal Mapping window in MCD, click the option Do Auto Mapping. This will automatically map
identically-named signals to each other.

Todo: Run the simulation and watch the PLC’s variables in a watch table. The production station should now be
controlled through the simulated PLC.

4.5 Preparation: Station IMS4

4.5.1 Goal

• To get to know the structure and functionality of the IMS4 station

4.5.2 Task

The following questions/task will help you get familiar with the functionality of the station.

• Identify each of the components highlighted in the following figure and their respective function. Are they sensors
or actuators? Would they be defined as inputs or as outputs in a PLC program?

• Describe or outline in a sketch the process of the station.

• Sketch a state machine diagram to describe the functionality of the station.

4.5. Preparation: Station IMS4 27

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

28 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Siemens NX MCD

• To which elements should a rigid body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a collision body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a joint be assigned in Siemens NX MCD? What type of joints are required to model
this station’s behaviour? Is specifying both attachment object and base object required?

• For which objects should a position control be created? (hint: position controls are created to manipulate the
position of joints)

• Which signals should be created inside Siemens NX MCD? What is the function of each signal?

• Which operations should be created? Describe the function of each operation.

PLC Program

• Which inputs and outputs should be defined in the PLC program?

4.6 Station IMS4: Practical Assignment

4.6.1 Goal

• To create a physics-based model of the IMS4 station

• To implement the state machine of IMS4 in a TIA Portal program

• To control the physics model with the created state machine program via OPC UA

4.6.2 IMS4 Station Functionality

The purpose of the IMS4 station is to mount the top part to the already-existing base part. The bottom part arrives on
a workpiece carrier being transported on a conveyor belt.

To achieve that purpose, the station uses a few sensors and actuators, shown in the following figure.

Note: The IMS4 station has two latch cylinders. One on each side of the top part being separated.

Note: The guiding magazine in the above figures is blinded out, however, the active collision surfaces assigned to it
are shown in pink.

4.6. Station IMS4: Practical Assignment 29

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.12: Sensors and actuators on the IMS4 station

30 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.13: Latch mechanism

Fig. 4.14: Station’s functionality

4.6. Station IMS4: Practical Assignment 31

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.15: Station’s functionality

4.6.3 The Virtual Layer - Mechatronics Concept Designer

Physical properties should be assigned to different parts of the IMS4 station. Open the assembly file called IMS4.prt
in Siemens NX and navigate to the Mechatronics Concept Designer application.

Top part, base part and workpiece carrier

The base part, top part (the part being mounted) and the workpiece carrier already have rigid body and collision bodies
assigned to them. These objects are assigned on the single part’s level. To see the objects, double click on the respective
part in the Assembly Navigator window and navigate to the Physics Navigator window.

Note: The definition of collisions: Two objects collide when they get in contact with and exert forces onto each other.
Collisions are part of the station’s functionality. In the context of the simulation, collisions do not refer to accidents.

Rigid and collision bodies

Note: When assigning collision bodies to parts, only sides/areas of the part that will undergo collision during the
simulation should be chosen. Avoid defining the entire part as a collision body, because it increases the complexity of
the body and unnecessarily slows down the simulation.

Note: When assigning collision bodies to parts, try to choose simple geometry (box, cylinder, sphere, etc.) if compli-
cated geometry (mesh) is not crucial for the physical behaviour of the part.

Todo: Assign collision bodies to the magazine surfaces that store the top parts and along which the top parts fall

32 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.16: An example of collision body assignment. Collision surfaces are shown in pink. The upper part has a simpli-
fied geometry and surfaces on the part that will not undergo collision were not chosen, which reduces the complexity.

4.6. Station IMS4: Practical Assignment 33

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

during the separation process. These surfaced keep the top parts in place and guide the top parts during the separation
process. Assign other collision bodies to the left and right side areas for the conveyor belt. These areas help guide the
carrier along the conveyor belt.

Conveyor belt

To simulate a conveyor belt, a rectangular surface will be used as a Transport surface. The band itself will be
blinded out while the simulation is running.

Todo: Assign a Transport surface to the part 200213_TransportflaecheDUMMY. Do that on the
Entire_Transport_Band level.

Mounting mechanism - latches

Rigid and collision bodies

The latches on both sides are what hold the parts from falling. They also separate the parts in two steps. Because they
will collide with the top parts, rigid and collision bodies should be assigned to them. Because the latches’ shape is
crucial to their functionality, the option mesh should be chosen when assigning collision bodies to both latches.

Fig. 4.17: Two latches are used to separate the parts on two steps.

Note: Assign physical properties to the latches on the LM9681_Montage assembly level. Can mesh be avoided? Try
using a simplified collision geometry for the parts of the latch that actually collide.

Joints

34 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Both latches should be allowed to rotate along the bolts on which they are mounted.

Todo: Assign hinge joints to both latches. Specify the axis vector and the anchor point around which the latches
will rotate. Because the base of the joint will not be moving, the base object can be left unassigned. Give the joints a
clear name.

Angular Spring Joints

Each latch ‘latches’ back to its original position through an angular spring joint (also known as a simple torsion spring).
Assign an Angular Spring Joint to each of the latches. Set the spring constant to 20 N.mm/°, damping to 0.1
N.mm.s/°, and relaxed position to 30° away from up-straight adjustment. The following figure shows the angular
position of one latch. In a relaxed position (if there were no cylinder to collide with the latch), the latch would be at a
30° angle to the vertical axis. With the cylinder touching the latch, the 30° is never reached. The resulting new angle
(marked in blue) is not relevant to setting the parameters of the Angular Spring Joints.

Fig. 4.18: Latch positioning with contact to the cylinder

Note: To check if the given parameters reflect the intented behaviour, one can run the simulation and see how the
latches will rest. Always run the simulation on the top most hierarchy level i.e., in the IMS4 assembly and not in a

4.6. Station IMS4: Practical Assignment 35

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

sub-assembly.

Danger: Running the simulation in a sub-assembly might be handy, but it leads to an OPC UA communication
bug. Avoid running the simulation unless its in the top most assembly level. If OPC UA communication is not
working, see the troubleshooting section on how to fix it.

The angular position of the latches will be physically controlled by the latch cylinders. As the cylinders phyically push
onto the latches, they induce the separating motion for the top parts magazined in the part tunnel. As the cylinders
retract back, the latches latch back to their original position under the effect of their torsion springs.

Mounting Mechanism - Cylinders (Latch Cylinders and Stopper Cylinder)

Two cylinders are used to move the latches and create the part-separating motion. When the cylinders are retracted, the
latches swing back to their original positions through a torsion spring attached to them (not shown in the CAD model).

Fig. 4.19: Two cylinders are used to push the two latches. One cylinder is used to stop the workpiece carrier.

Rigid and collision bodies

Todo: Assign rigid and collision bodies to the cylinder parts.

36 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Note: When assigning rigid bodies to part, a few parts can be selected together and defined as one colelctive rigid
body. This should be done if those parts will always undergo the same motion together. In the case of the stopper
cylinder, the cylinder itself but also the attached gummy object around it can be selected together.

Joints

Each cylinder should be constrained in all directions but one. Since every cylinder will only be either driven out or in,
a sliding joint should be assigned to each cylinder.

Todo: Assign sliding joints to each cylinder.

Note: As attachment object, the cylinder itself should be chosen. Becasue the housing of the cylinders will not move
during the simulation, the base object can be left unselected. Selecting the housing of the cylinders as the base object
is in this case optional.

Note: Make sure to name each of the joints appropriately. For example: Latch_1_SlidingJoint,
Latch_2_SlidingJoint, and Stopper_SlidingJoint

Note: Define a lower limit of 0 and an upper limit of 10. This prevents the physical object of wandering beyond those
limits.

Position Control

To control the position of the object on the sliding joint, position controls have to be assigned to the sliding joint objects.

Todo: Create position controls and assign them to each of the 3 sliding objects.

Note: Name the position controls appropriately. For example: Latch_1_PositionControl,
Latch_2_PositionControl, and Stopper_PositionControl

Signals

In order to, in turn, control those position controls through boolean variables from the PLC program later (the goal),
one should create signals in MCD and name them appropriately. For example: bStopper_down and bSwings_open.

Note: Only one signal can be responsible for triggering both latches. Therefore, do not create two signals for the two
latches, but create one signal to control both of them.

Signal Name Signal Function
bStopper_down sets the stopper’s position control position to 5mm
bSwings_open sets the latch’s position control position to 5mm

Todo: Create 2 boolean signals in MCD for the position controls of the cylinders. Be sure to define the signal as an

4.6. Station IMS4: Practical Assignment 37

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Inputs, since they are inputs from MCD’s perspective.

Note: Do not link the signals to any runtime variables. These signals will trigger opertations later.

Note: You can create a symbol table for the all of those signals and call it PLCSIM_Advanced. Symbol tables are a
good way to arrange and organize signals that are related together. Since these signals will communicate with PLCSIM
Advanced, such a name for the symbol table provides clarity.

Operations

Operations are like if-statements in the MCD simulation. They can be used to trigger something in the simulation if an
external (or internal) condition is met.

Todo: Create an operation to send the stopper cylinder down. Call it Stopper_down_operation for clarity.

Note: Operations can be found in the Sequence Editor menu on the left.

The selected physics object of the operation is the stopper’s position control Stopper_PositionControl. The run-
time parameter selected is the position, because this is the parameter to be manipulated by the operation. The new
value is inserted in the Value column. Under Condition, the condition object selected is the signal bStopper_down.
The if-value of the signal should be set to true.

The equivalent in C++ would be:

if(bStopper_down == true) {stopper_sliding_position = 5;}

Todo: Create an additional operation that would set the value of Stopper_PositionControl to 0 mm if
bStopper_down is false. Call the operation Stopper_up_operation.

Todo: Create 4 more operations to control both latch-cylinders: Two operations to drive the cylinders out and two
operations to drive the cylinders in. Use bSwings_open as the boolean condition-variable for these operations.

Todo: Create a boolean signal and use an operation to turn the conveyor belt on and off.

38 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.20: An operation to send the stopper’s sliding joint to position 5mm if the signal bStopper_down is true.

4.6. Station IMS4: Practical Assignment 39

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Sensing Mechanism - Entry and Exit Sensors

Collision Sensor

The IMS4 has entry and exit sensors at the start and end of the conveyor belt (see section on IMS4 Station Functionality).
These two sensors will be simulated as two small cubes with collision sensor properties.

Create a new block in mechanical concept under the Home tab. Give the block the dimensions of 10mm x 10mm
x 10mm. Under the Assemblies tab, click on Create New to create a new model. Name the model something appro-
priate, like end_limit_switch_dummy and click OK. To select the block just created, navigate to Part Navigator
on the left-side menu and choose the block that was just created. Now the block is a model and can be seen in the
Assembly Navigator. Choose Move Component under the Assemblies tab and move the new block to where the
sensor is supposed to be.

Note: When moving an object, clicking on Specify Orientation will enable you to drag on the three axis to move the
object.

Now that the dummy-sensor is in place on the conveyor belt. Assign a collision sensor to it. Be sure to call the collision
sensor something appropriate, like End_limit_switch_right.

Signal

For the dummy sensor to send its reading to the PLC, a signal should be created.

Todo:

Create a boolean signal and connect it with a runtime parameter. The physics object selected should be
the End_limit_switch_right object. Be sure to define the signal as an Output, since it is an output
from MCD’s perspective.

Note: It is important to give the signal a clear name. For example: bEnd_limit_switch_right. Where b in the
beginning stands for boolean.

The entry sensor is done for now. Later, End_limit_switch_right will be mapped to a PLC signal with the exact
same name.

Todo: Go through the same steps again and create a second sensor to detect the carrier’s exit. Call the new sensor
signal bEnd_limit_switch_left.

4.6.4 The Physical Layer – PLC Program

A program to control the IMS4 station can be found in the downloads. In this module, a PLC will be simulated to
control the station.

40 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

TIA Portal

The following figure shows a state machine diagram for the IMS4 station. This state machine is implemented in the
program.

Fig. 4.21: A state machine diagram for the IMS4 station’s functionality.

Todo: Open the program in TIA Portal.

Note: Outputs of the MCD Simulation are inputs of the IMS4 function block, and vice versa. Use the same exact names
that are used in the variables in the IMS4 function block in the MCD simulation also. This allows for auto-mapping
later.

4.6. Station IMS4: Practical Assignment 41

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.22: Variables of the IMS4 function block

PLCSIM Advanced

Todo: Start PLCSIM Advanced and start a PLC simulation.

Note: Make sure the PLC simulated has the same name as the PLC in the TIA Portal program.

Note: Make sure PLCSIM Virtual Eth. Adapter is selected.

In TIA Portal, compile your program and upload it to the simulated PLC.

4.6.5 Controlling the MCD Application using the PLC Program

Todo: Make sure an OPC UA server is configured in the PLC program and connect to it in MCD. When including vari-
ables from the PLC program through OPC UA, choose the variables that you need to control the simulated production
station.

Todo: In the Signal Mapping window in MCD, click the option Do Auto Mapping. This will automatically map
identically-named signals to each other.

Todo: Run the simulation and watch the PLC’s variables in a watch table. The production station should now be
controlled through the simulated PLC.

42 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

4.7 Preparation: Station IMS5

4.7.1 Goal

• To get to know the structure and functionality of the IMS5 station

4.7.2 Task

The following questions/task will help you get familiar with the functionality of the station.

• Identify each of the components highlighted in the following figure and their respective function. Are they sensors
or actuators? Would they be defined as inputs or as outputs in a PLC program?

• Describe or outline in a sketch the process of the station.

• Sketch a state machine diagram to describe the functionality of the station.

4.7. Preparation: Station IMS5 43

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Siemens NX MCD

• To which elements should a rigid body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a collision body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a joint be assigned in Siemens NX MCD? What type of joints are required to model
this station’s behaviour? Is specifying both attachment object and base object required?

• For which objects should a position control be created? (hint: position controls are created to manipulate the
position of joints)

• Which signals should be created inside Siemens NX MCD? What is the function of each signal?

• Which operations should be created? Describe the function of each operation.

PLC Program

• Which inputs and outputs should be defined in the PLC program?

4.8 Station IMS5: Practical Assignment

4.8.1 Goal

• To create a physics-based model of the IMS5 station

• To implement the state machine of IMS5 in a TIA Portal program

• To control the physics model with the created state machine program via OPC UA

4.8.2 IMS5 Station Functionality

The purpose of the IMS5 station is to insert a bolt that connects the top part and the bottom part together. Both parts
arrive on the workpiece carrier that is transported on a conveyor belt.

The station uses a few sensors and actuators shown in the following figure.

Note: A left end limit switch exists on the left end of the conveyor belt

Note: The guiding magazine in the above animation is blinded out, however, the active collision surfaces assigned to
it is shown in pink.

44 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.23: Sensors and actuators on the IMS5 station

4.8. Station IMS5: Practical Assignment 45

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.24: IMS5 mechanism

46 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

4.8.3 The Virtual Layer - Mechatronics Concept Designer

Physical properties should be assigned to different parts of the IMS5 station. Open the assembly file called
ASSEMBLY_IMS5.prt in Siemens NX and navigate to the Mechatronics Concept Designer application.

Top part, base part, bolt, and workpiece carrier

The base part, top part, bolt (the part being mounted) and the workpiece carrier already have rigid body and collision
bodies assigned to them. These objects are assigned on the single part’s level. To see the objects, double click on the
respective part in the Assembly Navigator window and navigate to the Physics Navigator window.

Note: The definition of collisions: Two objects collide when they get in contact with and exert forces onto each other.
Collisions are part of the station’s functionality. In the context of the simulation, collisions do not refer to accidents.

Rigid and collision bodies

Note: When assigning collision bodies to parts, only sides/areas of the part that will undergo collision during the
simulation should be chosen. Avoid defining the entire part as a collision body, because it increases the complexity of
the body and unnecessarily slows down the simulation.

Note: When assigning collision bodies to parts, try to choose simple geometry (box, cylinder, sphere, etc.) if compli-
cated geometry (mesh) is not crucial for the physical behaviour of the part.

Todo: Assign collision bodies to the magazine surfaces that store the bolts and along which the bolts fall during the
separation process. These surfaced keep the bolts in place and guide the bolts during the separation process. Assign
other collision bodies to the left and right side areas for the conveyor belt. These areas help guide the carrier along the
conveyor belt.

Conveyor belt

To simulate a conveyor belt, a rectangular surface will be used as a transport surface. The band itself will be
blinded out while the simulation is running.

Todo: Assign a transport surface to the part 200213_TransportflaecheDUMMY. Do that on the
Entire_Transport_Band level.

4.8. Station IMS5: Practical Assignment 47

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.25: An example of collision body assignment. Collision surfaces are shown in pink. The upper part has a simpli-
fied geometry and surfaces on the part that will not undergo collision were not chosen, which reduces the complexity.

48 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Mounting Mechanism - Cylinders (Mounting Cylinder and Stopper Cylinder)

A pneumatic cylinder is used to push the bolt into the other pieces. Another cylinder is used as a stopper for the
workpiece carrier.

Rigid and collision bodies

Todo: Assign rigid and collision bodies to the appropriate cylinder parts.

Note: When assigning rigid bodies to part, a few parts can be selected together and defined as one colelctive rigid
body. This should be done if those parts will always undergo the same motion together. In the case of the stopper
cylinder, the cylinder itself but also the attached gummy object around it can be selected together.

Joints

Each cylinder rod should be constrained in all directions but one. Since every cylinder will only be either driven out or
in, a sliding joint should be assigned to each cylinder rod.

Todo: Assign sliding joints to each cylinder.

Note: As attachment object, the cylinder’s rod should be chosen. Becasue the housing of the cylinders will not move
during the simulation, the base object can be left unselected. Selecting the housing of the cylinders as the base object
is in this case optional.

Note: Make sure to name each of the joints appropriately. For example: Cylinder_SlidingJoint, and
Stopper_SlidingJoint

Note: Define a lower limit of 0 and an upper limit of 10. This prevents the physical object of wandering beyond those
limits.

Position Control

To control the position of the object on the sliding joint, position controls have to be assigned to the sliding joint objects.

Todo: Create position controls and assign them to each of the sliding objects.

Note: Name the position controls appropriately. For example: Cylinder_PositionControl and
Stopper_PositionControl

Signals

In order to, in turn, control those position controls through boolean variables from the PLC program later (the goal),
one should create signals in MCD and name them appropriately. For example: bStopper_down and bCylinder_out.

4.8. Station IMS5: Practical Assignment 49

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Signal Name Signal Function
bStopper_down sets the stopper’s position control position to 5mm
bCylinder_out sets the mounting cylinder’s position control position to 7mm

Todo: Create 2 boolean signals in MCD for the position controls of the cylinders. e sure to define the signals as
Inputs, since they are inputs from MCD’s perspective.

Note: Do not link the signals to any runtime variables. These signals will trigger opertations later.

Note: You can create a symbol table for the all of those signals and call it PLCSIM_Advanced. Symbol tables are a
good way to arrange and organize signals that are related together. Since these signals will communicate with PLCSIM
Advanced, such a name for the symbol table provides clarity.

Operations

Operations are like if-statements in the MCD simulation. They can be used to trigger something in the simulation if an
external (or internal) condition is met.

Todo: Create an operation to send the stopper cylinder down. Call it Stopper_down_operation for clarity.

Note: Operations can be found in the Sequence Editor menu on the left.

The selected physics object of the operation is the stopper’s position control Stopper_PositionControl. The run-
time parameter selected is the position; this is the parameter to be manipulated by the operation. The new value is
inserted in the Value column. Under Condition, the condition object selected is the signal bStopper_down. The
if-value of the signal should be set to true.

The equivalent in C++ would be:

if(bStopper_down == true) {stopper_sliding_position = 5;}

Todo: Create an additional operation that would set the value of Stopper_PositionControl to 0 mm if
bStopper_down is false. Call the operation Stopper_up_operation.

Todo: Create two more operations to control the mounting cylinder: One operations to drive the cylinder out and one
operation to drive the cylinder in. Use bCylinder_out as the boolean condition-variable for these operations.

Todo: Create a boolean signal and use an operation to turn the conveyor belt on and off.

50 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.26: An operation to send the stopper’s sliding joint to position 5mm if the signal bStopper_down is true.

4.8. Station IMS5: Practical Assignment 51

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Sensing Mechanism - Entry and Exit Sensors

Collision Sensor

The IMS5 has entry and exit sensors at the start and end of the conveyor belt (see section on IMS5 Station Functionality).
These two sensors will be simulated as two small cubes with collision sensor properties.

Create a new block in mechanical concept under the Home tab. Give the block the dimensions of 10mm x 10mm
x 10mm. Under the Assemblies tab, click on Create New to create a new model. Name the model something appro-
priate, like end_limit_switch_dummy and click OK. To select the block just created, navigate to Part Navigator
on the left-side menu and choose the block that was just created. Now the block is a model and can be seen in the
Assembly Navigator. Choose Move Component under the Assemblies tab and move the new block to where the
sensor is supposed to be.

Note: When moving an object, clicking on Specify Orientation will enable you to drag on the three axis to move the
object.

Now that the dummy-sensor is in place on the conveyor belt. Assign a collision sensor to it. Be sure to call the collision
sensor something appropriate, like End_limit_switch_right.

Signal

For the dummy sensor to send its reading to the PLC, a signal should be created.

Todo: Create a boolean signal and connect it with a runtime parameter. The physics object selected should be the
End_limit_switch_right object. Be sure to define the signal as an Output, since it is an output from MCD’s
perspective.

Note: It is important to give the signal a clear name. For example: bEnd_limit_switch_right. Where b in the
beginning stands for boolean.

The entry sensor is done for now. Later, End_limit_switch_right will be mapped to a PLC signal with the exact
same name.

Todo: Go through the same steps again and create a second sensor to detect the carrier’s exit. Call the new sensor
signal bEnd_limit_switch_left.

4.8.4 The Physical Layer – PLC Program

A program to control the IMS5 station can be found in the downloads. In this module, a PLC will be simulated to
control the station.

52 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

TIA Portal

The following figure shows a state machine diagram for the IMS5 station. This state machine is implemented in the
program.

Fig. 4.27: A state machine diagram for the IMS5 station’s functionality.

Todo: Open the program in TIA Portal.

Note: Outputs of the MCD Simulation are inputs of the IMS5 function block, and vice versa. Use the same exact names
that are used in the variables in the IMS5 function block in the MCD simulation also. This allows for auto-mapping
later.

4.8. Station IMS5: Practical Assignment 53

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.28: Variables of the IMS5 function block

PLCSIM Advanced

Todo: Start PLCSIM Advanced and start a PLC simulation.

Note: Make sure the PLC simulated has the same name as the PLC in the TIA Portal program.

Note: Make sure PLCSIM Virtual Eth. Adapter is selected.

In TIA Portal, compile your program and upload it to the simulated PLC.

4.8.5 Controlling the MCD Application using the PLC Program

Todo: Make sure an OPC UA server is configured in the PLC program and connect to it in MCD. When including vari-
ables from the PLC program through OPC UA, choose the variables that you need to control the simulated production
station.

Todo: In the Signal Mapping window in MCD, click the option Do Auto Mapping. This will automatically map
identically-named signals to each other.

Todo: Run the simulation and watch the PLC’s variables in a watch table. The production station should now be
controlled through the simulated PLC.

54 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

4.9 Preparation: Station IMS7

4.9.1 Goal

• To get to know the structure and functionality of the IMS7 station

4.9.2 Task

The following questions/task will help you get familiar with the functionality of the station.

• Identify each of the components highlighted in the following figure and their respective function. Are they sensors
or actuators? Would they be defined as inputs or as outputs in a PLC program?

• Describe or outline in a sketch the process of the station.

• Sketch a state machine diagram to describe the functionality of the station.

4.9. Preparation: Station IMS7 55

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Siemens NX MCD

• To which elements should a rigid body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a collision body be assigned in Siemens NX MCD? (some elements are not highlighted
in the figure above)

• To which elements should a joint be assigned in Siemens NX MCD? What type of joints are required to model
this station’s behaviour? Is specifying both attachment object and base object required?

• For which objects should a position control be created? (hint: position controls are created to manipulate the
position of joints)

• Which signals should be created inside Siemens NX MCD? What is the function of each signal?

• Which operations should be created? Describe the function of each operation.

PLC Program

• Which inputs and outputs should be defined in the PLC program?

4.10 Station IMS7: Practical Assignment

4.10.1 Goal

• To create a physics-based model of the IMS7 station

• To implement the state machine of IMS7 in a TIA Portal program

• To control the physics model with the created state machine program via OPC UA

4.10.2 IMS7 Station Functionality

The purpose of the IMS7 station is to pick-and-place the end-product from the assembly line onto an outside platform.
It does so by using a vacuum gripper and a rotating arm to lift the end-product and re-place it on the platform.

The station has a few sensors and actuators, shown in the following figure.

4.10.3 The Virtual Layer - Mechatronics Concept Designer

Physical properties should be assigned to different parts of the IMS7 station. Open the assembly file called
ASSEMBLY_IMS7.prt in Siemens NX and navigate to the Mechatronics Concept Designer application.

56 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.29: Sensors and actuators on the IMS7 station

4.10. Station IMS7: Practical Assignment 57

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.30: The station’s functionality

58 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Top part, base part, bolt, and workpiece carrier

Assign rigid bodies to all parts that are going to move/collide during the simulation of the station. All parts that will
not move/collide during the simulation should be ignored.

Rigid and collision bodies

Todo: Assign rigid and collision bodies to the top part, the base part, bolt, and the carrier.

Note: When assigning rigid bodies to part, a few parts can be selected together and defined as one colelctive rigid
body. This should be done if those parts will always undergo the same motion together.

Note: When assigning collision bodies to parts, only sides/areas of the part that will undergo collision during the
simulation should be chosen. Avoid defining the entire part as a collision body, because it increases the complexity of
the body and unnecessarily slows down the simulation.

Note: When assigning collision bodies to parts, try to choose simple geometry (box, cylinder, sphere, etc.) if compli-
cated geometry (mesh) is not crucial for the physical behaviour of the part.

Fig. 4.31: An example of collision body assignment. Collision surfaces are shown in pink. The upper part has a simpli-
fied geometry and surfaces on the part that will not undergo collision were not chosen, which reduces the complexity.

4.10. Station IMS7: Practical Assignment 59

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: Assign a collision body to the platform that receives the end-product.

Conveyor belt

To simulate a conveyor belt, a rectangular surface will be used as a Transport surface. The band itself will be
blinded out while the simulation is running.

Todo: Assign a Transport surface to the part 200213_TransportflaecheDUMMY. Do that on the
Entire_Transport_Band level.

Pick and place mechanism

Rigid and collision bodies

The entire arm rotates to bring the end-product to the specified platform. Because all components of the arm undergo
the same motion together at all times during the simulation, they should be defined as a unified rigid body.

Note: Because the cylinder’s rod will undergo a different motion than the rest of the arm, it should not be included in
the same rigid body definition. The cylinder’s rod should be defined as its own rigid body.

Todo: Assign a rigid body and a collision body to the cylinder’s rod and to the stopper’s rod.

Joints

Todo: Assign a sliding joint to both the cylinder’s rod and the stopper’s rod and enter appropriate limits.

Note: Does the base object have to be specified in both cylinder’s cases? Why or why not?

Todo: Assign a hinge joint at the rotating part of the arm.

Special joint case: vacuum gripper

A fixed joint should be created between the gripper and the top part being picked up. Because those two parts belong
to different sub-assemblies, only the base of the fixed joint (the gripper) should be given when creating the fixed joint.
The attachment of the fixed joint (the product) should be assigned to the fixed joint later during the simulation using
an operation.

The top part is connected to the bottom part through a magnetic contact in addition to the bolt. The magnetic contact
will also be simulated using a fixed joint.

Todo: Create a fixed joint between the gripper and the top part. Create another fixed joint between the top part and
the base part. At first, give in only the base objects (the gripper for the first fixed joint and the top part for the second

60 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.32: The entire arm is defined as one rigid body

4.10. Station IMS7: Practical Assignment 61

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.33: The cylinder’s rod is its own rigid body

62 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

fixed joint respectively). Manipulate those fixed joints by adding their attachment objects later in the simulation when
the gripper is supposed to lift the product using an operation (see section on operations).

Todo: Optional task: is there a way to let the product fall (switch off the fixed joint) if the product’s weight exceeds a
certain limit? Describe the approach briefly.

Position controls

Todo: Assign position control objects to each of the joints.

Signals

Todo: Assign signals to each of the position control objects.

Operations

Operations are like if-statements in the MCD simulation. They can be used to trigger something in the simulation if an
external (or internal) condition is met.

Note: Operations can be found in the Sequence Editor menu on the left.

Todo: Create an operation to send the stopper cylinder down. Call it Stopper_down_operation for clarity.

The selected physics object of the operation is the stopper’s position control. The runtime parameter selected is the
position, because this is the parameter to be manipulated by the operation. The new value is inserted in the Value
column. Under Condition, the condition object selected is the signal that was created to control the stopper.

The equivalent in C++ would be:

if(bStopper_down == true) {stopper_sliding_position = 5;}

Todo: Create operations to rotate the arm, drive the pneumatic cylinder down, and turn on the gripper (turn on the
Stick when Collision property of the gripper’s collision body).

Todo: Determine the position control values by measuring the length of the rod and taking the start position into
consideration.

4.10. Station IMS7: Practical Assignment 63

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.34: An operation to send the stopper’s sliding joint to position 5mm if the signal bStopper_down is true.

64 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Sensing Mechanism - Entry and Exit Sensors

Collision Sensor

The IMS7 has entry and exit sensors at the start and end of the conveyor belt (see section on IMS7 Station Functionality).
These two sensors will be simulated as two small cubes with collision sensor properties.

Create a new block in mechanical concept under the Home tab. Give the block the dimensions of 10mm x 10mm
x 10mm. Under the Assemblies tab, click on Create New to create a new model. Name the model something appro-
priate, like end_limit_switch_dummy and click OK. To select the block just created, navigate to Part Navigator
on the left-side menu and choose the block that was just created. Now the block is a model and can be seen in the
Assembly Navigator. Choose Move Component under the Assemblies tab and move the new block to where the
sensor is supposed to be.

Note: When moving an object, clicking on Specify Orientation will enable you to drag on the three axis to move the
object.

Now that the dummy-sensor is in place on the conveyor belt. Assign a collision sensor to it. Be sure to call the collision
sensor something appropriate, like End_limit_switch_right.

Signal

For the dummy sensor to send its reading to the PLC, a signal should be created.

Todo: Create a boolean signal and connect it with a runtime parameter. The physics object selected should be the
End_limit_switch_right object. Be sure to define the signal as an Output, since it is an output from MCD’s
perspective.

Note: It is important to give the signal a clear name. For example: bEnd_limit_switch_right. Where b in the
beginning stands for boolean.

The entry sensor is done for now. Later, End_limit_switch_right will be mapped to a PLC signal with the exact
same name.

Todo: Go through the same steps again and create a second sensor to detect the carrier’s exit. Call the new sensor
signal bEnd_limit_switch_left.

4.10.4 The Physical Layer – PLC Program

A program to control the IMS7 station can be found in the downloads. In this module, a PLC will be simulated to
control the station.

4.10. Station IMS7: Practical Assignment 65

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

TIA Portal

The following figure shows a state machine diagram for the IMS7 station. This state machine is implemented in the
program.

Todo: Open the program in TIA Portal.

Note: Outputs of the MCD Simulation are inputs of the IMS7 function block, and vice versa. Use the same exact names
that are used in the variables in the IMS7 function block in the MCD simulation also. This allows for auto-mapping
later.

PLCSIM Advanced

Todo: Start PLCSIM Advanced and start a PLC simulation.

Note: Make sure the PLC simulated has the same name as the PLC in the TIA Portal program.

Note: Make sure PLCSIM Virtual Eth. Adapter is selected.

In TIA Portal, compile your program and upload it to the simulated PLC.

4.10.5 Controlling the MCD Application using the PLC Program

Todo: Make sure an OPC UA server is configured in the PLC program and connect to it in MCD. When including vari-
ables from the PLC program through OPC UA, choose the variables that you need to control the simulated production
station.

Todo: In the Signal Mapping window in MCD, click the option Do Auto Mapping. This will automatically map
identically-named signals to each other.

Todo: Run the simulation and watch the PLC’s variables in a watch table. The production station should now be
controlled through the simulated PLC.

66 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.35: A state machine diagram for the IMS7 station’s functionality.

4.10. Station IMS7: Practical Assignment 67

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 4.36: Variables of the IMS7 function block

4.11 Summary

The virtual commissioning of an entire production line is a process that takes effort to achieve but reduces the overall
project time through early verification of the control code.

After simulating each station and testing the individual code, the next step would be to combine all stations in one
whole simulation of the entire production line. Likewise, the individual codes should also be combine and the entire
setup should be tested for further bugs. Bringing us a step closer to a more confident real commissioning with the real
hardware.

4.12 Troubleshooting

4.12.1 OPC UA Communication Troubleshooting

Runtime error: Cannot connect to this OPC Server

If upon starting the simulation the above error shows up, navigate to External Signal Configuration in the
Automation tab. The connection status of the OPC Server has to be ‘connceted’. If the status is ‘connected’, click
OK and try running the simulation again. If the status is ‘unknown’, click on Refresh Server Status. This may
change the status back to ‘connected’ and the simulation will then run.

Green tick is missing; cannot choose external variables in External Signal Configuration

If this is the case, close all open assemblies and restart Siemens NX.

OPC UA communication connected but variables do not get updated during the simulation #1

If the OPC UA communication is succesful and mapping is done correctly, but the variables do not get updated through
OPC UA in either direction (i.e., both inputs and outputs do not respond), then a certain part or sub-assembly is causing
this problem. The solution is to start rebuilding the current main assembly in a new file and adding each part one by
one, testing the OPC UA connection after adding each part. This way, you will be able to spot the part and/or assembly
that is causing the communication issue.

If the cause of the issue is a sub-assembly, create a new sub-assembly with a different name and import all parts of the
old sub-assembly in. Use the new assembly instead of the old one. This should allow the communication to function.

68 Chapter 4. Virtual Commissioning of a Production Line

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

If the cause of the problem is a part, reconstruct the part in a new file and use the new part (copying the old part in a
new file does not resolve the problem).

OPC UA communication connected but variables do not get updated during the simulation #2

If the OPC UA communication was running perfectly but all of a sudden the variables stop responding, this may be
caused by running a simulation only on a sub-assembly or part level. Undoing the past 3 steps and reselecting the main
assembly then running the simulation will undo this problem.

Siemens NX MCD offers the possibility to run simulations on the sub-assembly or part level. This is helpful to see
how only one part will be simulated without simulating the entire assembly. However, it is recommended to run the
simulation only on main assembly level because of this OPC UA communication bug.

Only some variables are updated through OPC UA

This issue occurs when communicating with a PLC program over OPC UA.

In case the OPC UA communication seems to function with only some variables and with other variables it seems to
be down, make sure that the variables being transfered over OPC UA are declared in a function block in the PLC
program and not mapped directly to a PLC I/O module.

4.12.2 PLCSIM Advanced V2.0 Troubleshooting

PLC Instance cannot be started: licence could not be found

If the simulation instance of a PLC does not run, open PLCSIM Advanced as an administrator and try again.

4.12. Troubleshooting 69

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

70 Chapter 4. Virtual Commissioning of a Production Line

CHAPTER

FIVE

OPERATOR DIGITAL TWIN FOR ASSISTANCE SYSTEMS

5.1 Short Introduction to Digital Twins

Digital twins are often defined as “Digital representation, sufficient to meet the requirements of a set of use cases”
(Plattform Industrie 4.0). Integrating data about the asset (object which has a value to an organization and is therefore
managed individually) from different life cycle phases, a digital machine twin can provide valuable structuring of data
and insights; from asset development and configuration all the way to the asset’s end of life.

In the figure below, we can differentiate a type and an instance. All planning data creates the type of the asset. The
type is used to implement the physical (real-world) instance of the asset. The planning activities are inclusive of all
domains namely mechanical, electrical and software. A type becomes an instance when development and prototype
production is completed, and the actual product is manufactured.

For example, the type of car includes CAD models, wiring diagrams, accessories which can be varied according to
a desired use case. Thus, the type specifies which different car configuration are available in form of a 150% model.

71

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

When the customer selects their individual configuration, for example in an online shop, a virtual 100% model is
created. The 150% model as well as the 100% model are still part of the product type. As soon as the 100% model
is manufactured, an individual instance is created. Thus, the customer gets a real-world touchable car with a unique
serial number. Customers will use their car instances and create specific and individual lifecycles with respect to their
usage.

When the product is delivered to the customer, this marks the beginning of a product’s lifetime or service time. During
this, the product provides the service for which it was planned and manufactured. During service life, prescribed
maintenance is suggested to avoid sudden breakdown of the product. Once the product’s service time ends or the
product is no longer required, the product is decommissioned, and this marks as end of life. During the end of life, the
product can be recycled, up cycled, or decomposed according to requirements.

The digital twin includes data from the type (analysis, specification, and design phases) as well as data from the
instance (implementation, system test, operation, and maintenance phases). Also, end of life phases must be included.
The collected data can be analyzed and a predictive model can be created. This way, objects which are, for example,
subject to wear can be replaced at the right time.

5.2 Digital Twins of Operators

Assistance systems are important for humans in production systems to handle the increasing complexity. They can
display relevant indicators, provide information about work routines, or notify their user in case of problems and errors.
Combined with gamification approaches, they allow personalized feedback and targeted support during work. Using
gamified level systems, habituation effects, and dependencies upon the assistance systems can be decreased.

However, the development and usage of gamified assistance systems require access to different data sources, which
often remains a challenge.

In this course, we are accessing automatically generated work data from a manual work station and transfer it to useful
indicators for user digital twins. This step is important as the raw data is not suitable for user digital twin applications.

72 Chapter 5. Operator Digital Twin for Assistance Systems

CHAPTER

SIX

OEE EVALUATION WITH PYTHON

In this course, work data from a manual working station will be analyzed according to different KPI, such as the Overall
Equipment Effectiveness (OEE).

6.1 Learning Outcome

In this course, you will learn how to use existing sensor data to calulate work indicators, such as the OEE. You will
also create visualizations for further data analysis and interpretation.

6.1.1 Requirements

• Basic programming principles

• Basic knowledge of Python including Pandas

Hint: If you’re unfamiliar with python or need a refresher, please prepare the following micro courses:

• https://www.kaggle.com/learn/intro-to-programming

• https://www.kaggle.com/learn/python

Hint: If you have not worked with Pandas before, please prepare the following micro course:

• https://www.kaggle.com/learn/pandas

Hint: You can download a Pandas cheat sheet here: https://pandas.pydata.org/docs/user_guide/index.html

73

https://www.kaggle.com/learn/intro-to-programming
https://www.kaggle.com/learn/python
https://www.kaggle.com/learn/pandas
https://pandas.pydata.org/docs/user_guide/index.html

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

6.1.2 What you need

Hardware

• Laptop or PC

Software

• PyCharm Community version (https://www.jetbrains.com/pycharm/)

• Python 3.8 (or larger)

6.1.3 Sources and Resources

• https://pandas.pydata.org/docs/getting_started/intro_tutorials/index.html

• https://pandas.pydata.org/

• https://matplotlib.org/

6.2 Task

The Industry 4.0 model factory at FH Aachen includes a manual working station (MWS). The MWS includes different
sensoric devices for user and workspace tracking as well as a projector to display work instructions. Currently, the
MWS is used for a variety of assembly tasks, such as the mounting of an industrial handgrip or a dog-shaped structure.

https://youtu.be/xtaxXZJaG_Y

The data from the MWS will be used for the indicator calculations. In order to see and understand the work data, you
need to set up the work environment first.

6.3 Setting up the work environment

All required data and the prepared python modules are available in a gitlab repository: https://git.fh-aachen.de/
lectures-material-wollert/oee_python_course

Todo: Fork and clone this repository (using HTTPS).

74 Chapter 6. OEE Evaluation with Python

https://www.jetbrains.com/pycharm/
https://pandas.pydata.org/docs/getting_started/intro_tutorials/index.html
https://pandas.pydata.org/
https://matplotlib.org/
https://youtu.be/xtaxXZJaG_Y
https://git.fh-aachen.de/lectures-material-wollert/oee_python_course
https://git.fh-aachen.de/lectures-material-wollert/oee_python_course

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: Check if all required libraries (see requirements.txt) have been installed automatically.

Therefore, go to Files -> Settings -> Project -> Python Interpreter.

If libraries are missing, you can manually install them using the + symbol.

Todo: Add a new Python run configuration to start the program logic in PyCharm. Add your module (here: analy-
sis.py) to the configuration. Set the working directory to your project folder.

6.3. Setting up the work environment 75

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: Check if the main function is executed when you start the configuration (the logger should show an Assertion-
Error: The function ‘get_dataframe_from_directory’ has no return value).

(The assertion error is thrown as the function get_dataframe_from_directory is not yet implemented.)

Todo: Include style checking using flake8 to make your program more readable. Add the module which should be
checked in Parameters. Set the working directory to your project folder.

76 Chapter 6. OEE Evaluation with Python

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: You can automatically check your programming style before executing the main program logic by adding the
flake8-configuration to your main configuration.

6.3. Setting up the work environment 77

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: Check if the work data is in your project repository.

78 Chapter 6. OEE Evaluation with Python

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

6.4 Understanding the work data

The MWS of the Industry 4.0 model factory displays situation-dependent work instructions and detects user interac-
tions. It consists of

• A height-adjustable working desk on which instructions can be projected,

• A storage area with a pick-by-light system,

• A tool holder and two acknowledgment buttons, and

• A Poka-Yoke workpiece holder for assembly operations.

The work sequence consists of 20 work steps in which parts must be mounted or clipped to form an industrial handgrip
of the company Item Industrietechnik GmbH. One tool, a screwdriver, is required for the assembly execution. First, the
side parts of the handgrip are premounted twice and placed in a storage box. Afterward, these side parts are attached
to the main profile, and the covers are placed over the screws.

In order to reduce the assembly complexity and simplify the small parts handling, a workpiece holder is used. The
workpiece holder consists of 3D-printed parts, which limit the mounting options. This way, unintended errors are
prevented (Poka-Yoke principle).

The manual workstation is capable of detecting the majority of user interactions automatically:

• A LiDAR sensor is used to capture grabbing actions in the storage area.

• The tool holder identifies if a tool is available or not.

6.4. Understanding the work data 79

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• The workpiece holder checks if the workpieces are placed in the correct positions.

• Also, two check positions are integrated, ensuring all covers are placed correctly, and the side areas are mounted
tightly.

As the cover clipping cannot be identified automatically, these work steps must be acknowledged manually by pressing
a hand or foot button. In order to evaluate the user interactions, the system stores all interactions on a granular basis,
including user id, timestamps, durations, run number, and correctness.

For a user study, over 60 test persons were asked to assemble the handgrip five times at the MWS. The participants had
different backgrounds, from mechatronics to psychology.

Todo: Check the provided work data in your project repository (folder workdata).

Each number (501-5xx and 601-6xx) represents a test user who was requested to manufacture the handgrip five times.

The node specifies the name of a work step according to a given work sequence. For instance, the work sequence starts
with a work step (node) called “Place_Nut_1” followed by “Place_Holder_1”. Each work step can include several user
interactions, such as picking a nut and placing it afterwards.

The “DefaultTime” specifies an initial approximation of working times according to the performance of ten initial users.

In this project, the goal is to analyze the obtained work data according to productivity and quality; the main focus is on
the Overall Equipment Effectiveness (OEE). In this application example, the different working days should be analyzed
and compared.

As the work data was obtained during a user study, no traditional working shifts were used but time slots (60min) during
which the participants had to assemble the handgrip five times but also answer some questionnaires. The starting time
of the planned working slots were noted in a .csv file

Todo: Check out the planned work slots planned_working_times.csv

6.5 Basic program structure

For this course, a basic program structure is provided which predefines all required functions to solve the data analysis
task.

The main() function includes predefined function calls related to the different sections of this course. It also includes
tests to automatically validate the function implementations.

Todo: Open the analysis.py file and check the main() function. It contains the outline of this course and is
structured accordingly. It looks complicated, however most of it are associated tests. Look for instance at assert df
is not None. This line raises an AssertionError if the variable df is None. The testing provides you with a direct
feedback and lets you know if your implemented functions work as expected.

Warning: Please only change the main() function when instructed during this course (indicated by the term
FIXME). All new program code should be added to the other predefined functions.

Hint: The predefined function contain documentation explaining how the function should work. Additionally, hints
are provided to help you implement the functions. For every hint usually just a few lines of code need to be written.

80 Chapter 6. OEE Evaluation with Python

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

You should use the hints to comment your code. Feel free to find your own solution if you don’t want to follow the
hints.

6.6 Data preparation - Work data

In a first step, the obtained work data files should be merged into one dataframe. Therefore, the function
get_dataframe_from_directory should be implemented.

Todo: Expand the get_dataframe_from_directory function to load all work data files and put them in one
dataframe.

Ensure that the timestamp is in the Pandas datetime format and use the timestamp as index and sort your data according
to it using sort_index().

Remove all columns containing “Unnamed”.

Todo: Check if the created dataframe gets validated successfully and if the dataframe has the correct shape.

In a second step, sensor-based picking errors should be removed from the user data analysis.

Todo: Implement the mask_dataframe function to remove:

• all rows that contain “RemoveItem” in column “ActionName”

• all columns that contain “pickItem” in row “ActionType” only if row “Error” is True.

Todo: Check if the adjusted dataframe gets validated successfully and if the dataframe has the correct shape.

6.6.1 Base value calculation

Based on the obtained work data, the following information should be calculated for further analysis:

• Cycle times per user and run

• Mean times per user action (e.g. mean times for action “pickItem” for object “Nut”) as setpoints for production
planning

Cycle times

The cycle times (run times) allow an analysis regarding the individual user performance. Also, it can be analyzed if
the user performance increases with the run numbers.

Todo: Implement the calculate_cycle_times function.

Create a new dataframe which includes all single cycle times per user and run number.

As the timestamps still include the removed actions, please use the DeltaTime values for your cycle time calculation.

6.6. Data preparation - Work data 81

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: To create a better overview for the data analysis, calculate the following information and put them in the
predefined dictionary:

• minimum cycle time (seconds) for all runs of all users

• average cycle time (seconds) for all runs of all users

• maximum cycle time (seconds) for the last run of each user

• average cycle time (seconds) for the last run of each

As the timestamps still include the removed actions, please use the DeltaTime values for your cycle time calculation.

Setpoints

The obtained data should be used to set new default times (setpoints) for future handgrip assembly actions at the MWS.
For instance, the default times are required to provide individual feedback to each user regarding his performance and
improvements.

As the mounting actions vary in effort and dexterity, individual default times for each action are required instead of
general default times per action type.

Todo: Implement the calculate_setpoints function to calculate the average working time per user activity and
store them in a csv file for further usage. The average working times should be specified according to “ActionType”
and “Node”.

Also, return the setpoints as a multiindex pandas series.

6.7 OEE calculation

The overall equipment effectiveness is one of the main process indicators for production environments. It is calculated
for production resources (e.g., a manual work station) for specific time intervals (e.g., days). It is not used to compare
the effectiveness of different production resources but to analyze the effectiveness of one specific resource.

The typical OEE calculation is based on the three OEE Factors: Availability (𝐴), Performance (𝑃), and Quality (𝑄).

𝑂𝐸𝐸 = 𝐴 · 𝑃 ·𝑄

In general, there exist different possibilities on how to calculate the OEE parameters. Typical examples are shown
below.

For the availability (𝐴), the real production time (𝑡𝑟𝑒𝑎𝑙) is compared to the planned production time (𝑡𝑝𝑙𝑎𝑛). For instance,
a workstation was planned to be operated 6 hours during an 8 hour shift; however, it was only running for 3 hours due
to unplanned circumstances. Thus, the availability of this time interval is 50%.

𝐴 =
𝑡𝑟𝑒𝑎𝑙
𝑡𝑝𝑙𝑎𝑛

For the performance, the ideal production time (𝑡𝑖𝑑𝑒𝑎𝑙) is calculated using the planned cycle time (𝑡𝑐𝑦𝑐) and the number
of produced parts (𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑). Next, the ideal production time (𝑡𝑖𝑑𝑒𝑎𝑙) is compared to the real production time (𝑡𝑟𝑒𝑎𝑙)
for the produced parts. For instance, 100 parts were produced during the three hours (180 minutes) working time.

82 Chapter 6. OEE Evaluation with Python

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

According to the production planning, each part requires a planned cycle time of 1 minute. Thus, ideal production time
was 100 minutes and the performance of this time interval 55.5%.

𝑡𝑖𝑑𝑒𝑎𝑙 =
𝑡𝑐𝑦𝑐

𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑃 =
𝑡𝑖𝑑𝑒𝑎𝑙
𝑡𝑟𝑒𝑎𝑙

The quality is usually calculated by dividing the number of good parts (𝑛𝑔𝑜𝑜𝑑) by the number of total manufactured
parts (𝑛𝑡𝑜𝑡𝑎𝑙). For instance, 90 parts were good parts and 10 parts got rejected. Thus, the quality was 90%.

𝑄 =
𝑛𝑔𝑜𝑜𝑑

𝑛𝑡𝑜𝑡𝑎𝑙

Note: In this example of a handgrip assembly, the quality of the assembly routine is calculated instead of focusing on
finished assembly parts. Therefore, the number of correct production actions (𝑛𝑔𝑜𝑜𝑑𝑎𝑐𝑡𝑖𝑜𝑛𝑠) are compared to the total
number of production actions (𝑛𝑡𝑜𝑡𝑎𝑙𝑎𝑐𝑡𝑖𝑜𝑛𝑠).

𝑄 =
𝑛𝑔𝑜𝑜𝑑𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑡𝑜𝑡𝑎𝑙𝑎𝑐𝑡𝑖𝑜𝑛𝑠

In order to calculate the OEE indicators, the existing dataframe will be expanded.

6.7.1 Work information per day

The availability calculation for the obtained data set is a bit tricky as the work data was obtained in a user study with a
fixed number of runs and not in a traditional shift system. Therefore, the planned production time per day is accessed.
The planned starting times of each user slot can be found in the file planned_working_times.csv.

Todo: Adjust the function calculate_work_data() to create a new dataframe data with work information accord-
ing to working days.

For the OEE indicator calculation and analysis, the following information is required per working day:

6.7. OEE calculation 83

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Number of timeslots (TimeSlots)

• Number of users (Users`)

• Number of user work actions (Actions)

• Number of production steps with errors (Errors)

• Number of produced parts (ProducedParts)

• Real working time (RealWorkingTime)

• Unused working time due to no-show participants (UnusedWorkingTimes)

6.7.2 OEE parameters per day

As all required information have been obtained in the previous steps, the OEE parameters can be calculated per working
day.

Todo: Adjust the calculate_oee() function to add the OEE parameters per day to the existing dataframe data.

6.8 Visualization

Visualizations help us to understand and interpret data. Typically, matplotlib is used for this purpose. However, the
pandas library also provides basic functionalities to create plots which can be further adjusted using matplotlib.

Hint: If you want to create a new visualization or if you are looking for some specific elements, such as titles or
colorbars, it is always a good option to use examples: https://matplotlib.org/stable/gallery/index

6.8.1 OEE graph

Todo: Implement the function draw_oee() to create an OEE bar chart displaying the OEE parameters per day.
Include a heading, axis labels, and a legend. Show the parameters in % and adjust the figure size according to your
data.

Save the figure as png-file in the folder figures.

6.8.2 Scatter plot - cycle times

Todo: Implement the function draw_scatter to create one scatter plot for all cycle times (each point should represent
one run) and one scatter plot for the cycle times of the last run. Add a histogram to both scatter plots.

Also, add a line plot for the average cycle times to both scatter plots.

Save the figure as png-file.

Do not forget to label your axes and include a heading.

84 Chapter 6. OEE Evaluation with Python

https://matplotlib.org/stable/gallery/index

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

6.9 Data evaluation

Now you have a good basis to understand your data and start improvement processes.

Todo: What would you do to improve the OEE?

Todo: What do you see as main factors which negatively influence the OEE?

6.10 Problem Solving

6.10.1 Plotting

The render backend does not work

Usually, the render backend from matplotlib should open an interactive window. If this is not the case, there is some
error with the installation. As a quick fix you can avoid the interactive window, by using the plt.savefig to store
the graph on your filesystem. If you want to draw a new graph, you need to remove the old graph from your memory.
Usually, this is done automatically, by closing the interactive window. Call plt.close to to this task manually.

6.9. Data evaluation 85

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

86 Chapter 6. OEE Evaluation with Python

CHAPTER

SEVEN

DIGITAL TWIN OF A ROBOT DOG

7.1 Short Introduction to Digital Twins

Digital twins are often defined as “Digital representation, sufficient to meet the requirements of a set of use cases”
(Plattform Industrie 4.0). Integrating data about the asset (object which has a value to an organization and is therefore
managed individually) from different life cycle phases, a digital machine twin can provide valuable structuring of data
and insights; from asset development and configuration all the way to the asset’s end of life.

In the figure below, we can differentiate a type and an instance. All planning data creates the type of the asset. The
type is used to implement the physical (real-world) instance of the asset. The planning activities are inclusive of all
domains namely mechanical, electrical and software. A type becomes an instance when development and prototype
production is completed, and the actual product is manufactured.

For example, the type of car includes CAD models, wiring diagrams, accessories which can be varied according to
a desired use case. Thus, the type specifies which different car configuration are available in form of a 150% model.

87

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

When the customer selects their individual configuration, for example in an online shop, a virtual 100% model is
created. The 150% model as well as the 100% model are still part of the product type. As soon as the 100% model
is manufactured, an individual instance is created. Thus, the customer gets a real-world touchable car with a unique
serial number. Customers will use their car instances and create specific and individual lifecycles with respect to their
usage.

When the product is delivered to the customer, this marks the beginning of a product’s lifetime or service time. During
this, the product provides the service for which it was planned and manufactured. During service life, prescribed
maintenance is suggested to avoid sudden breakdown of the product. Once the product’s service time ends or the
product is no longer required, the product is decommissioned, and this marks as end of life. During the end of life, the
product can be recycled, up cycled, or decomposed according to requirements.

The digital twin includes data from the type (analysis, specification, and design phases) as well as data from the
instance (implementation, system test, operation, and maintenance phases). Also, end of life phases must be included.
The collected data can be analyzed and a predictive model can be created. This way, objects which are, for example,
subject to wear can be replaced at the right time.

7.2 Creating a Digital Twin for a Robotic Dog

In this course, you will learn to use a robot dog “Bittle” to develop your individual robodog instance. You will collect
data from your instance of the robot dog and use it to build a digital twin. This course is designed to explain the concept
of digital twin and its application with interactive ready to buy modules with plug and play interface. Bittle is a robot
dog that can do simple tasks, such as walking or waving. However, it cannot perform complex tasks, such as object
avoidance or line following, out of the box. This must be implemented by expanding the existing robodog hardware
and by creating additinal program code.

An overview of the type and instance of robot dog with additional modules can be visualized in the image below.

When looking at the robot type, you will see that different robot configurations are possible, depending on your hardware
selection. The hardware selection possibilities can be organized according to different hardware modules:

• Control board: This is the main brain of the robot.

88 Chapter 7. Digital Twin of a Robot Dog

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Locomotion hardware: Parts that help robot move in real world.

• Peripheral devices: Sensors and Actuators used to interact with the real world.

• Communication interface: Protocols used for sending and receiving information between control board and
peripheral devices or locomotion hardware.

All hardware options as well as the base structure make up the 150% model of the robot. Thus, the 150% model
describes all possible configuration variants of the robot dog creating the DT type.

Depending on your use case, you can create a specific robot configuration (100% model). As an example, the following
configuration is selected:

• Control Board -> ESP32

• Locomotion hardware -> Bittle dog

• Communication interface between control board and locomotion hardware -> UART

• Peripheral devices -> Sharp GP2Y0A02YK0F (Distance measurement)

When the product described by the 100% model is manufactured, assembled, and given a unique article number, it
becomes an instance. Different instances of the same robot type will perform differently due various factors, such as
battery charge, position of the sensor, the code snippet used etc.

Once the instance is ready, the data can be collected and stored. This data will help in analyzing the performance of that
specific instance and can be used to compare with other instances or to improve the 150% model type. Thus forming

7.2. Creating a Digital Twin for a Robotic Dog 89

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

90 Chapter 7. Digital Twin of a Robot Dog

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

a DT.

7.2. Creating a Digital Twin for a Robotic Dog 91

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

92 Chapter 7. Digital Twin of a Robot Dog

CHAPTER

EIGHT

BITTLE

Fig. 8.1: QR Code to course

8.1 Learning Outcome

8.1.1 Introduction

8.1.2 Requirements

• Arduino Basics

• Visual Studio Code Basics

• Introduction to Version Control with Git

93

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.2: Introduction

Fig. 8.3: Bittle demo

94 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.1.3 What you need

Hardware

• Bittle robot

• Arduino UNO

• Electronics Kit (including sensors)

Software

• Visual Studio Code

• Git Version Control

• Arduino IDE 1.8.X

• Node-RED

8.1.4 Sources and Resources

1. VS Code https://code.visualstudio.com/

2. GitLab https://git.fh-aachen.de/

3. GitLab Extension for VS Code https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow

4. PlatformIO https://platformio.org/

5. Arduino IDE https://www.arduino.cc/en/software

6. Git https://git-scm.com/

7. Professional Git by Brent Laster (available online in University Library)

8. Petoi Bittle User Manuals https://bittle.petoi.com/

9. Bittle Online Help https://www.yuque.com/tinkergen-help-en/bittle

10. Node-RED https://nodered.org/docs/getting-started/

11. Git Book V2 https://git-scm.com/book/en/v2

12. Real-time C++ Fourth edition. ISBN 3-662-62996-8 (University Library)

8.2 Workspace Setup

In this section, all the required software is installed. Visual Studio Code is used for the code development.

Todo: Please download the presented software with the links provided in their respective sub-sections.

8.2. Workspace Setup 95

https://code.visualstudio.com/
https://git.fh-aachen.de/
https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow
https://platformio.org/
https://www.arduino.cc/en/software
https://git-scm.com/
https://bittle.petoi.com/
https://www.yuque.com/tinkergen-help-en/bittle
https://nodered.org/docs/getting-started/
https://git-scm.com/book/en/v2

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.2.1 Visual Studio Code

Visual Studio Code is a source code editor. It supports various programming languages and can be combined with
compilers to work as a package integrated development environment IDE.

VS Code has IntelliSense which allows word based completions. This you can write code syntax without typos.

You also get access to various extensions. These enhance the working of VS Code and also adds new features as per
requirements.

Fig. 8.4: VS Code by Microsoft

Todo: Download and install Visual Studio Code.

Download Link: https://code.visualstudio.com/download

Todo: If you have not yet worked with Visual Studio Code before, follow this course on Visual Studio Code Basics

8.2.2 Arduino IDE Extension

The introductory programming sessions will be conducted using Arduino UNO board. The board can be programmed
using C++. To write the code, the Arduino extension will be required in Visual Studio Code. This code will then be
compiled using a GCC compiler and uploaded to the board using a flashing program. For uploading, the board has to
be connected to the PC using a USB A (PC side) to USB B (UNO side) cable.

Fig. 8.5: Arduino Uno (ref: Arduino Store)

Todo: Download and install the Arduino IDE to program your Arduino Uno.

Download Link: https://downloads.arduino.cc/arduino-1.8.19-windows.zip

96 Chapter 8. Bittle

https://code.visualstudio.com/download
https://downloads.arduino.cc/arduino-1.8.19-windows.zip

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.6: Development Workflow (ref: Real-time C++)

8.2. Workspace Setup 97

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Version: 1.8.X

Todo: Check if VS Code automatically detected the installed Arduino IDE.

If in case it doesn’t happen, follow the steps below:

• Open Extensions from Activity Bar. Search Arduino extension.

• Click on small gear (manage menu) next to it. It will open a new menu.

• Click on Extension Settings. New tab will open.

• Scroll down and find Arduino Path

• Enter the complete installation address of your Arduino IDE. C:Program Files...

Hint: More information about the extension can be found in the Visual Studio Code Basics

Todo: Check out the Arduino examples provided with the libraries on the Side Bar. Open and test the Blink example.

Hint: Open Explorer and in the end a section named Arduino Examples can be expanded. Expand Built-in Examples
-> 01. Basics -> Blink. A new window with the example will open.

98 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.7: VS Code Arduino UI

Todo: If you have not yet worked with the Arduino IDE before, follow this course on Arduino Basics

8.2.3 Version control using Git and GitLab

A version control is a kind of system which allows you to keep track of the changes that have been made to a code over
a duration of time. This means that you can, at any given point in time, revert back to the older versions of the code
you are working on.

Git is a popular VC software. Git works on Distributed Version Control Systems. This system provides everyone the
copy of all files and allows user to edit them locally. The user can then work on the files locally and then upload the
files to the server. The advantage of DVCS is that, if a server crashes, a local user can upload the files and make it
running as they have a complete copy of the server data.

In this course, Git will be used as part of Visual Studio Code.

Todo: Download and install Git on your device

Download Link: https://git-scm.com/downloads

8.2. Workspace Setup 99

https://git-scm.com/downloads

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.8: Distributed Version Control System. (ref: Git Book V2)

100 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: If you have not yet worked with Git before, please follow this course on Introduction to Version Control with
Git

GitLab is a DevOps tool used for hosting Git repositories. It allows collaborative team work to develop softwares. The
difference between Git and GitLab or other platforms (Bitbucket, GitHub) is that these platforms allow users to upload
their git projects online. This makes collaborative team work easy. As for git, you can even work with git on a local
computer without the need of a hosting platform. The local git project will stay for your use only and would not be
shared directly with your teammates.

We will be using GitLab for this course as our university hosts a server of it, thus making it easy for us to use the
platform. To use the University’s GitLab server, use the following link: https://git.fh-aachen.de/

You can check the access by logging on the following website using your FH-Kennung (FH identifier) (AB1234S) and
password.

Todo: Create a profile for the FH-Aachen GitLab account and confirm that you have access to the GitLab server of
your university.

Todo: Add your GitLab account to Visual Studio Code. You can follow the steps outlined in Visual Studio Code
Basics

Todo: Create a new repository for your project. Share the repository with your teammates with proper access rights.

Todo: Create a new branch apart from Main (Master) branch. Work in the new branch only. When you are sure
about your work , merge the changes from the new branch to Main (Master) branch.

8.2.4 Node-RED

Node-RED is a programming tool for wiring together hardware devices, APIs and online services in new and interesting
ways. It provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes in the
palette that can be deployed to its runtime in a single-click. (ref: Node-RED)

Todo: Download node-RED for your device and follow the Quick Start introduction: https://nodered.org/docs/
getting-started/windows

Palettes is the menu on the left side. It contains all the available nodes that be used for designing a flow. The nodes are
sorted with their use and the tree structure can be expanded and collapsed as per requirements.

External libraries can be installed on node-red using Palette Manager. You can open Palette Manager from the top
right menu in node-red.

Todo: If you have not yet worked with Node-RED before, follow this course on Node Red Basics

Todo:

8.2. Workspace Setup 101

https://git.fh-aachen.de/
https://nodered.org/docs/getting-started/windows
https://nodered.org/docs/getting-started/windows

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Please install the following palettes:

• node-red-node-serialport (https://flows.nodered.org/node/node-red-node-serialport)

• node-red-dashboard (https://flows.nodered.org/node/node-red-dashboard)

8.2.5 Everything ready?

Todo: Check if you have the following setup running on your PC:

• Visual Studio Code ready.

• Arduino IDE 1.8.X ready.

• Arduino Extension can be used in VS Code.

• Your GitLab account is accessible via VS Code.

• You have a repository created on the GitLab website and it’s cloned on your PC using VS Code.

• Node-RED is running on your device and you can access it via your web browser.

8.3 Hardware Setup

8.3.1 Pre-assembled kit

Todo:

If you received the pre-assembled Bittle, you need to:

1. insert the neck into the body.

2. bend the knees to natural angles.

3. drag the curly wire from the knee side to the shoulder side to avoid squeezing when the knee joints rotate.

4. put the joints into the following posture before turning on the power.

5. long press the battery’s button for 2~3 seconds to power on/off.

Warning: The pre-assembled Bittle is only coarse-tuned. You still need to calibrate Bittle’s joint servos and final
assembly to fine-tune its joints for the best performance.

If a small calibration is required, it can be done using App/Code. This will be done in the upcoming sections.

If the deviation is more than that possible with App/Code, you need to remove the corresponding part of the servo
and re-install. Please refer this for details.

102 Chapter 8. Bittle

https://flows.nodered.org/node/node-red-node-serialport
https://flows.nodered.org/node/node-red-dashboard

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.9: Unassembled Bittle Kit and Pre-assembled Bittle.

Fig. 8.10: Rest position of Bittle before powering.

8.3. Hardware Setup 103

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.3.2 Base kit

Todo: If you received the a base kit with the single parts, you need to follow the tutorial provided here: https:
//bittle.petoi.com/4-Assemble-The-Frame

and here:

https://bittle.petoi.com/5-connect-wires

8.4 Bittle Body

Hint: The walk pattern of animals is explained nicely presented here: (https://www.animatornotebook.com/learn/
quadrupeds-gaits)

Hint: Various other parts can be found here -> https://github.com/PetoiCamp/NonCodeFiles/tree/master/stl

Fig. 8.11: Standing dog

104 Chapter 8. Bittle

https://bittle.petoi.com/4-Assemble-The-Frame
https://bittle.petoi.com/4-Assemble-The-Frame
https://bittle.petoi.com/5-connect-wires
https://www.animatornotebook.com/learn/quadrupeds-gaits
https://www.animatornotebook.com/learn/quadrupeds-gaits
https://github.com/PetoiCamp/NonCodeFiles/tree/master/stl

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Danger: The robot is built using custom body parts. PLEASE be careful in removing and installing parts.

To access the main board, you need to remove the back cover of Bittle. The back cover has Click-Lock mechanism.

Fig. 8.12: Bittle with top cover

8.5 Electrical and Controller Properties

The components inside Bittle are:

• the main board on the top which is covered with a plastic shell.

• the servos which are installed at every joint. (The motor shaft depicts joints and the motor body is connected
to the limb)

• the battery which is installed at the bottom.

Todo: Get familiar with the provided hardware.

8.5. Electrical and Controller Properties 105

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.13: Body Dimensions

8.5.1 Main Board

Specifications

Controller Specifications:

Mainboard Name NyBoard V1_1
Microcontroller ATmega328P
Operating Voltage 5V
Chip frequency / Clock speed 16 MHz
DC Current per I/O Pin 20mA

Memory usage:

Flash 32KB
SRAM 2KB
EEPROM 1KB
EEPROM (I2C) 8KB

External Interface:

• UART

• I2C (TWI)

• SPI

Additional on board components:

106 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.14: Standing dog

8.5. Electrical and Controller Properties 107

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.15: Top view of main board

Fig. 8.16: Bottom view of main board

108 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Component Description Protocol Address / Pin
MPU6050 6 axis IMU I2C At 0x68

Interrupt pin D2
PCA9685 16 channel PWM controller I2C At 0x40
AT24C64 EEPROM 8KB I2C At 0x54
VS1838B IR Receiver D4
Buzzer D5
Voltage divider A7
G1 External I2C I2C
G2 External analog pins Analog A2, A3
G3 External digital pins Digital D8, D9
G4 External digital pins Digital D6, D7
LED Single Green LED Digital D10

Board interface

Fig. 8.17: Interface diagram

8.5. Electrical and Controller Properties 109

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.18: Motor connection layout

110 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Board power supply

The actual voltage is approximately 2x of the reading. A safe range of battery voltage is below 10V. You
should charge the battery in time when the battery is lower than 7.4V.

𝑉 𝑜𝑙𝑡𝑎𝑔𝑒𝑟𝑒𝑎𝑙 =
𝐴𝐷𝐶𝑟𝑒𝑎𝑑𝑖𝑛𝑔

1024
× 5.0× 2

The main chips are powered by a Low-dropout (LDO) linear regulator for noise removal and better stability. LM1117-
5V and XC6206P-3.3V are used to power 5V and 3.3V chips. The 3.3V LDO is connected in serial after the 5V LDO
for better efficiency.

There’s a diode between the battery and LM1117-5V to prevent damage by the wrong connection. There’s a self-recover
fuse (6V 500mA) on the USB uploader to limit the current and protect the USB port.

The Raspberry Pi consumes much more power, so we choose TPS565201 DC-DC to provide a 5V 3A output. The
peak output can be 5A and with high-temperature/current/voltage protection. It will cut off the power when the chip
keeps outputting >4A and over 100 Celcius degrees until the temperature drops to normal.

The servos are powered by 2S Li-ion batteries directly. Pay attention not to short connect the power or any pins on the
NyBoard.

Fig. 8.19: Power supply diagram

8.5. Electrical and Controller Properties 111

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.5.2 Servos

The servos are used to execute the robot movements. These can be turned to the required angle as they have a built-in
feedback circuit. Inside a servo motor, there is an electric motor which is in connected to a potentiometer using gear
train. The potentiometer is used to measure the angle of rotation of the motor shaft. The wiring of almost all servos
include VCC, GND and PWM input. PWM or Pulse width modulation is used to control the motor to the specific angle.

The controller controlling the servo sends pulse signal with duty cycle which nominally ranges between 1ms to 2 ms.
For example, if at 1ms the motor turns to -90° and at 2ms the motor turns at +90°, then at 1.5 ms the motor will turn at
0°.

Fig. 8.20: Servo motor

8.5.3 Battery

Specifications of battery:

Battery type Lithium Polymer
Number of cells 2 of 1000mAh
Total capacity 7.4Wh
Max discharge current 5A
Max output voltage 7.4V
Max recharge current 1A
Max recharge voltage 5V
Charging cable type micro-USB

112 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.21: Battery location and status LED.

Battery Status

Battery status LED color when Bittle is running or idle.

Blue Charged
Red Discharged

Charging status:

Battery status LED color when Bittle is charging.

Green Charged
Red Charging

8.6 Calibration

Calibration is done to remove misalignment of servo motors. If not done properly, the robot will have issues in walking
due to imbalance and jerky movements.

To calibrate Bittle, there are five methods,

• Use Mobile App (First choice)

• Use Desktop App.

• Use Serial Monitor inside Arduino IDE / PlatformIO.

8.6. Calibration 113

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• long-press the battery and boot up the robot with one side up. It will enter the calibration state automatically.

• Press (calibrate) button on IR remote.

Note: The following steps in image are same for all methods.

Fig. 8.22: Motor index for calibration.

Calibration Tool (L tool):

It’s especially important that you keep a parallel perspective when calibrating Bittle. Use the ‘L’-shaped joint tuner as
a parallel reference to avoid reading errors.

Align the tips on the tuner with the center of the screws in the shoulder and knee joints, and the little hole on the tip of
the foot. Look along the co-axis of the centers.

For each leg, calibrate the shoulder servos (index 8~11) first, then the knee servos(index 12~15). When calibrating the
knee, use the matching triangle windows on both the tuner and shank to ensure parallel alignment.

Servo Gear:

The servo gear in the image below divides 360 degrees into 25 sectors (1 gear tooth = 1 section), each taking 14.4
degrees(offset of -7.2~7.2 degrees).

Center of mass:

114 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.23: Calibration Tool placement (L tool).

Fig. 8.24: Visualization of precise calibration (on left) & Usage of calibration tool (on right).

8.6. Calibration 115

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.25: Various postures of Bittle used for calibration.

Fig. 8.26: Servo gear.

116 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Try to understand how the robot keeps balance even during walking. If you are adding new components to the robot, try
your best to distribute its weight symmetrically about the spine. You may also need to slide the battery holder back and
forth to find the best spot for balancing. Because the battery is heavier in the front, you can also insert it in a reversed
direction to shift the center of mass more towards the back.

Danger:

Before calibrating, PLEASE check the following:

• All connections are tight and no loose wires are hanging from the robot.

• Battery is completely charged

• Additional adaptor used is connected properly and the pins are in exact order.

Danger: Please do not force the robot to add heavy objects, which may cause the servos to sweep or get stuck.

Note: If something is not working, please check Problem Solving section.

8.6.1 Using Mobile App

To use Mobile App for calibration, you need to install Bluetooth Adaptor to Bittle.

Warning: Pay close attention to the Bluetooth Adaptor’s pin order in the image below.

8.6. Calibration 117

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.27: Bluetooth Adaptor connection to Bittle

After connecting the adaptor and powering the Bittle, the LED on the adaptor should blink to indicate that it’s
waiting for connection. To pair it with app follow the steps below:

• Download the mobile app. Android ` and iOS <https://apps.apple.com/us/app/petoi/id1581548095>`_

• Open the app and scan available bluetooth devices inside the app. (DO NOT connect Bittle from Phone’s
system settings.)

• Grant permissions to the App to use Bluetooth services.

• Bittle may show with the following names in the App: Bittle, Petoi, or OpenCat.

• Select Bittle in Robot Selection (if asked by the app).

• Once done, you will be redirected to control dashboard.

Calibrate Bittle:

Tap the triple dot menu from TOP RIGHT corner. Select Calibrate. Follow the on-screen instructions to fine tune
your robot.

After calibration, remember to tap the Save button to save the calibration offset. Otherwise, tap < (back) in the TOP
LEFT corner to cancel the calibration values and set them to previous values.

118 Chapter 8. Bittle

https://play.google.com/store/apps/details?id=com.petoi.petoiapp
https://apps.apple.com/us/app/petoi/id1581548095

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Warning: If the offset is more than +/- 9 degrees, you need to remove the corresponding part of the servo and
re-install. Please refer this for details.

8.6.2 Using Desktop App

To use Desktop App for calibration, you need to install USB Adaptor to Bittle.

Warning: Pay close attention to the USB Adaptor’s pin order in the image below.

Fig. 8.28: USB Adaptor connection to Bittle

After connecting the adaptor and powering the Bittle, follow the steps below:

• Download the desktop app. Windows & Mac

• Open the app and select the robot model as Bittle. Select the interface language (is asked).

• Click on Joint Calibrator. You will be redirected to calibration interface.

• Click on Calibration/Calibrate button from interface to set all servos in calibration position.

• Select the Slider thumb and set it to required value to calibrate the motor angle using L tool.

• You can change the posture of the robot from stand to rest to test the motor calibration.

• After calibration, remember to click the Save button to save the calibration offset. Otherwise, click Abort
(back) in the TOP LEFT corner to cancel the calibration values and set them to previous values.

8.6. Calibration 119

https://github.com/PetoiCamp/OpenCat/releases

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.29: Desktop calibration interface

120 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Warning: If the offset is more than +/- 9 degrees, you need to remove the corresponding part of the servo and
re-install. Please refer this for details.

8.6.3 Using Serial Monitor

To use Serial Monitor for calibration, you need to install USB Adaptor to Bittle.

Warning: Pay close attention to the USB Adaptor’s pin order in the image below.

Fig. 8.30: USB Adaptor connection to Bittle

After connecting the adaptor and powering the Bittle, follow the steps below: (Image attached below for
reference)

• Download the Arduino IDE / PlatformIO

• Open IDE, select COM Port and open serial monitor. Select Baud rate as 115200 and line ending as no
line ending.

• Enter c in serial monitor to enter calibration mode.

• You will receive 2 rows of numbers. The first row signifies the index of the motor, the second row signifies
the current calibration offset value.

• To set a custom offset value, use the following -> c<servo index> <offset value> example c8 6 means giving
the 8th servo an offset of 6 degrees.

• Use the L tool to set the angles to required value to calibrate the motor.

8.6. Calibration 121

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Once done, type s to save the calibration values. (You can even save every time after you’re done with one
servo.)

• Wait until you see Ready on serial monitor.

• After calibration, type d or kbalance to validate the calibration.

Warning: The resolution of the correction amount is 1 degree, do not use decimals.

Fig. 8.31: Sample serial control

Warning: If the offset is more than +/- 9 degrees, you need to remove the corresponding part of the servo and
re-install. Please refer this for details.

8.7 Controlling Bittle

To control Bittle, there are five methods,

• Use IR Remote (First choice)

• Use Mobile App

• Use Arduino IDE / PlatformIO

• Use Desktop App

• Use Python Scripts

Note: To ZOOM the image, Right Click the image and click Open in New Tab.

8.7.1 Using IR Remote

The IR command map is defined inside OpenCat/src/infrared.h. In the file, the commands are described as #define
KXX command . For example, K00 for the 1st row and 1st column and K32 for the 4th row and 3rd column.

122 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.32: IR controls
8.7. Controlling Bittle 123

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.7.2 Using Mobile App

The mobile app has the following dashboard.

Fig. 8.33: App dashboard

The app allows the following functions and controls:

Gaits:

The left panel sets both the robot’s gaits and directions and send combined command, such as “walk left” and “trot
forward”. The robot will only move if an initial gait and direction are selected. The “step” has no direction, and
“backward” has left and right directions.

The Pause button “||” will pause the robot’s motion and turn off the servos, so that you can rotate the joints to any angle.

The Turbo button (green dial icon) turns on/off the gyro which is used to detect the robot’s body orientation. Turning it
on will make the robot keep adjusting to body angles, and will know when it’s upside down. Turning it off will reduce
calculation and make it walk faster and more stable.

Default Actions:

The built-in postures and behaviors can be triggered by pressing the buttons.

Warning: Don’t press the button too frequently and repeatedly. Allow some time for the robot to finish its current
tasks.

Customized Commands

You can also define customized commands by pressing the “+” button. Long-press a custom command button to edit
it. There’s a lite serial console to test the command and even configure the robot.

These commands are created using the Serial Commands defined in “Using IDE” section. For example, i 8 -30 12 40
0 35 means that motors at 8, 12, 0 will move to angles -30, 40 and 35 respectively.

124 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.34: Custom action command

8.7.3 Using IDE

This section mainly focuses on controlling the robot using serial communication. There are pre-defined protocol which
uses ASCII encoding. The commands are case sensitive.

Few example commands are:

• ksit

• m0 30

• m5 -15

• kbalance

The complete command list is provided in the cheat sheet section.

Note: Some commands, like the c and m commands can be combined.

For example:

Successive “m8 40”, “m8 -35”, “m 0 50” can be written as “m8 40 8 -35 0 50”. You can combine up to four commands
of the same type.

To be exact, the length of the string should be smaller than 30 characters.

You can change the limit in the code but there might be a systematic constraint for the serial buffer.

8.7. Controlling Bittle 125

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.7.4 Using Desktop App

The desktop app has the following dashboard.

Fig. 8.35: App dashboard

The app allows the following functions and controls:

Joint Controller:

The center of this area is a schematic diagram marked with the index number of the joint servo. Control slider is used
for changing the degree of servo. The number above the slider indicates the angle value of the servo rotation in real-
time. The number below the track indicates the angle range-180 ~ 180of the servo rotation, though the boundaries may
not be reachable by the real robot. Press and drag the slider with the mouse to adjust the rotation angle of the servo,
and the robot’s joints will move in real time.

There are 2 linkage buttons corresponding to each servo (forward linkage symbol “+”, reverse linkage symbol
“-“). After clicking the linkage buttons of multiple servos, press and drag the control slider of one of the servos
with the mouse:

• The rotation direction of the joint servo corresponding to the forward linkage button + is the same as the
rotation direction of the servo controlled by the mouse.

• The rotation direction of the joint servo corresponding to the reverse linkage symbol - is opposite to the
rotation direction of the servo controlled by the mouse.

“Unbind All” button: It is used to cancel the linkage of all joint servos at once.

Control the robot body pose sliders as follows:

126 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Global Orientation and Translation Effect
Pitch Adjust the pitch angle
Roll Adjust the roll angle
Spinal Move in the spinal direction
Height Raise or lower the robot’s body

State Dials:

The state dials are used to connect the device either using USB connecting or via Bluetooth. You can select the
appropriate COM port of your robot from the drop down list.

By default the software will be in Listening mode and will keep looking for devices to be connected. Once connected,
the status changes to Connected. You can disconnect and disable auto-lookup by clicking on the same status. (Its a
button as well.)

Note: Please select the required PORT from the list. Do not leave it to ALL option.

When a device is connected, three Button are available for user -> Servo, Gyro and Random. The button description
is mentioned below:

Dial On State Off State
Servo All servos enter the locked state, and All servos are unloaded, and the joints

do not manually adjust the robot can be rotated at will, which is convenient
posture at this time for users to manually adjust the robot’s posture

Gyro The robot continuously calculates its The balancing calculation is skipped to make the
body orientation and try to keep balance. loops faster. The gaits will be accelerated.
It will self-right after falling over. The robot won’t self-right when you flip it.

Random The robot will randomly move every few The robot won’t move on its own.
seconds if you have uploaded the firmware
with RANDOM mode.

Preset Postures:

The Preset Postures are shortcuts for some preset poses of each robot. After clicking these posture buttons, both the
robot and the sliders will update to the new joint angles.

Skill Editor:

Danger: CONTENT UNDER REVIEW.

8.7.5 Using Python Scripts

This section allows you to send commands using python interface. The commands can be the pre-defined skills like
kbalance or your custom movement commands which are developed using the base serial commands like m 0 -30 0 30

To begin, open Terminal / Command Prompt CMD and navigate to OpenCat/serialMaster. (Please refer Download
Base Firmware for download information.)

To run commands, there two methods:

• Using ardSerial.py

• Using custom scheduler

8.7. Controlling Bittle 127

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Using ardSerial.py:

Use the following syntax to send commands:

• With skill as parameter:

..\serialMaster>python3 ardSerial.py kbalance

• Without parameter:

..\serialMaster>python3 ardSerial.py

To exit the script use quit or q.

Using custom scheduler:

Using custom script, you can control individual motor to perform a specific task as defined in the script and at specific
timing.

An example file is provided which can be executed using the following command:

..\serialMaster>python3 example.py

Additional information about this is provided in a separate section to keep this short. You can read about it here
Controlling Bittle (Advanced).

8.8 Extensible Modules

8.8.1 Sensors and Actuators

The head of Bittle is designed to be a clip to hold extensible modules. Mentioned below are some popular modules.
You can also wire other add-ons thanks to the rich contents of the Arduino and Raspberry Pi community.

You can find the demo codes of these modules in our GitHub repository. The codes can be found under ModuleTests
folder inside the source code.

Fig. 8.36: Extensible Modules

The modules are:

• LEDs

128 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Sound Sensor / Noise Detector

• Light Sensor / Phototransistor

• Touch Sensor

• Infrared Reflective Sensor

• PIR Sensor

• OLED Display

• Ultrasonic Sensor / Distance Sensor

8.8.2 Communication Modules

The Nyboard V1 used by robot uses the Atmel ATMEGA328P controller, which only supports only one serial port.The
default serial baud rate is 115200bps. Pin definitions are shown in the table below:

Pin No. Name Usage
1 DTR Modem signal DTR, reset NyBoard after serial download finished.
2 RX ATMEGA328P RX (receive)
3 TX ATMEGA328P TX (send)
4 5V 5V power for MCU and chips
5 GND Ground
6 GND Ground

USB Adaptor

The module uses a CH340C USB bridge. The uploader has three LEDs: power, Tx, and Rx. Right after the connection,
the Tx and Rx should blink for one second indicating initial communication, then dim. Only the power indicator LED
should keep lighting up.

NyBoard download interface: used to connect to NyBoard, download program firmware to the robot, and communi-
cate with the computer via serial port.

Communication module debugging interface: used to connect the Bluetooth or WiFi module, update the module
program and debug the parameters. In order to avoid the cumbersome operation when connecting with Dupont wires,
the pin ordering is slightly different from the NyBoard download interface - the TX/RX interface is reversed, and a
GND pin becomes an RTS pin. For details on how to use the debugging interface of the communication module, see
the following chapters.

Danger: Do not plug the NyBoard and the other module(WiFi or bluetooth) at the same time!

Warning: If Tx and Rx keep lighting up, there’s something wrong with the USB communication. Please check
the Adaptor and USB cable.

8.8. Extensible Modules 129

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.37: USB Adapter Description

Fig. 8.38: USB Adapter Connection

130 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Bluetooth Adaptor

The module uses JDY-23 Bluetooth 5.0 BLE module. It acts as a bridge between Bluetooth devices and micro-
controllers. You can wirelessly upload firmware or control the motion of the robot through a Bluetooth connection.
This module is also required to connect with the PETOI mobile app. A blinking LED on the Bluetooth module indicates
waiting for a connection. If required, the default PIN for pairing is “0000“ or “1234”. After the pairing is successful,
the system will assign a serial port name.

Fig. 8.39: Bluetooth Adapter Description

To externally configure bluetooth adaptor, you can connect the Bluetooth Adaptor with USB Adaptor. To configure
the module, use serial monitor with line ending as NL and CR and baud rate as 115200. The commonly used AT
commands are given below, for complete list please refer JDY-23’s specification sheet.

Usage Command
Check BT module version AT+VER
Check BT broadcast name AT+NAME
Change BT broadcast name AT+NAME<Device Name>
Check serial baud rate AT+BAUD
Change serial baud rate AT+BAUD<Baud Rate Identifier>

WiFi Adaptor

The module uses ESP8266EX’s official model ESP-WROOM-02D, 4MB QSPI Flash. The module includes an auto-
matic download circuit and a communication module. The automatic download circuit refers to the official recommen-
dation to use 2 S8050 transistors to receive the RTS and DTR signals from the CH340C downloader and trigger the
download sequence.

To setup the environment for WiFi adaptor, follow the steps below:

• In Arduino IDE, open File -> Preferences.

• Paste http://arduino.esp8266.com/stable/package_esp8266com_index.json in Additional Boards Man-
ager URL’s section. Click OK and close Preferences Pop-up.

• Open Board Manager from Tools -> Board -> Board Manager

8.8. Extensible Modules 131

http://arduino.esp8266.com/stable/package_esp8266com_index.json

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.40: Bluetooth Adapter Connection

132 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.41: Bluetooth - USB Configure

Fig. 8.42: Bluetooth Adapter Connection

8.8. Extensible Modules 133

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Enter ESP8266 in the search bar in Board Manager. You will find a search result developed by ESP8266
Community.

• Click on Install. Wait until it finishes.

• Once done, select Generic ESP8266 Module from Tools -> Board -> ESP8266 Boards

Select the following settings in Tools menu.

Parameters Settings
Builtin Led 2
Upload Speed 921600
CPU Frequency 80 MHz
Crystal Frequency 26 Mhz
Flash Frequency 40 Mhz
Flash Size 4MB (FS:2MB / OTA:1019KB
Reset Method DTR reset
lwIP variant V2 Lower memory
Erase Flash Only sketch

Fig. 8.43: ESP8266 - USB Configure

To use the module, a sample code is available under OpenCat/ModuleTests/ESP8266WiFiController. The code
folder consists of 3 files:

• ESP8266WiFiController.ino: Arduino sketch with server core code.

• mainpage.h: welcome page (html) in a char array.

• actionpage.h: action controller page (html) in a char array.

Steps to use sample code:

• Open code with IDE. Set the parameters for ESP9266 as given above. Connect the ESP8266 to USB
Module.

• Upload the code. Open Serial Monitor and set line ending to NL and CR and baud rate as 115200.

134 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• The module will create a Access Point. Using a WiFi enabled device (Mobile, Tablet, PC etc.), connect to
the access point named Bittle-AP.

• Once WiFi is connected, open a web browser and enter 192.168.4.1 in address bar and go to it.

• Here, configure your WiFi so that this ESP8266 can connect to it and thus to Internet.

• After the WiFi connection between your router and ESP8266 is successful, the AP mode will switch to
client mode and now your ESP8266 can connect to Internet.

• Enter the IP address shown on Serial Monitor in address bar of your WiFi device. A webpage with various
options will open. From here you can control your robot over WiFi.

Additional information about this is provided in a separate section to keep this short. You can read about it here
Controlling Bittle (Advanced).

8.8.3 Imaging Module

In addition to above mentioned modules, you can use a Camera module with Bittle to see what your robot dog is
seeing.

For this, an ESP32 Camera module is suitable.

Fig. 8.44: ESP32 Cam Board layout (ref: https://docs.ai-thinker.com/en/esp32-cam)

To setup the environment for ESP32 Camera, follow the steps below:

• In Arduino IDE, open File -> Preferences.

• Paste https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json in
Additional Boards Manager URL’s section. Click OK and close Preferences Pop-up.

• Open Board Manager from Tools -> Board -> Board Manager

• Enter ESP32 in the search bar in Board Manager. You will find a search result developed by esp32.

• Click on Install. Wait until it finishes.

• Once done, select AI Thinker ESP32-CAM from Tools -> Board -> ESP32 Arduino

Select the following settings in Tools menu.

Parameters Settings
Partition Scheme Huge APP

8.8. Extensible Modules 135

https://docs.ai-thinker.com/en/esp32-cam
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.45: ESP32 Cam Pinouts (ref: https://docs.ai-thinker.com/en/esp32-cam)

Pin Connection with USB Adapter

ESP 32 Cam USB Adaptor
5V 5V
GND GND
UnR TX
UnT RX
IO0 GND (when uploading)

Steps to use sample code:

• Open code with IDE. Open Example file named CameraWebServer from File -> Examples -> ESP32 ->
Camera -> CameraWebServer

• Set the credentials for your WiFi, (SSID and Password)

• Please confirm that CAMERA_MODEL_AI_THINKER is selected in the code as this is our board.

• Connect the ESP32_Cam module with the FTDI programmer if not already done. Connect the complete
setup to PC using USB cable.

• Select correct COM port and Upload the code. While uploading, keep in mind that GPIO 0 has to connect
to GND and module has to reset to go in download mode before you upload code to it.

• After successful upload, disconnect GPIO 0 from GND.

• Open Serial Monitor. Set the Baud Rate to 115200.

• Note the IP-Address and open it in a browser.

• Use onscreen options to control the camera and adjust its parameters.

Note: To use Flash / On board LED, please refer the in lecture presentation for code snippets.

136 Chapter 8. Bittle

https://docs.ai-thinker.com/en/esp32-cam

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Note: If the upload fails, check in serial monitor if your esp32cam is in download mode (baud rate: 115200).

If it is in download mode, upload again and when you see dots (. . .) in output window, press reset button on esp32cam.

If you face problems for more than 30 minutes, contact your instructor.

8.9 Serial Commands Cheat Sheet

Fig. 8.46: Serial Commands List 1

8.10 Tasks

Before doing the tasks, please make sure that you can control the robot using IR Remote. You should also know how
to use Serial commands using Arduino Serial Monitor.

You might need to 3D print some parts to mount your sensors.

Note: These tasks will use Arduino UNO are Higher level controller and the Bittle board as low level controller. You
must upload all your codes only to Arduino UNO. All sensors and actuators must be connected to Arduino UNO and
not directly to Bittle board.

8.9. Serial Commands Cheat Sheet 137

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.47: Serial Commands List 2

138 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Note: Use Serial baud rate as 15200 for communicating with Bittle Board.

Hint: You can use SoftwareSerial for the following tasks. Look about this before using.

Warning: Use develop branch for all initial codes. Create other branches according to the requirements.

When everything is ready before submission, merge the code to main branch.

WHEN MERGING develop TO main DE-SELECT “Delete source branch when merge request is accepted.” OP-
TION.

8.10.1 Connections

Connect your Bittle with Arduino UNO / ESP32 CAM using TX and RX pins. The connection should be as below:

Arduino UNO Bittle Board
TX Rx
GND GND
VIN 5V

Warning: When uploading code, you might have to remove the TX and RX pins from Arduino UNO board as
they are connected to the USB programmer.

Hint: You can also use Software Serial to virtually create TX and RX on any available digital pin on UNO board.

8.10.2 Task 1

Make Bittle move straight for some distance, perform a skill, turn around and return back to the start point. The
command must start from Node-RED.

Fig. 8.48: Task: Follow straight line

8.10. Tasks 139

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.10.3 Task 2

Bittle follows a line. The line will have curves, and will not be always straight.

Using ESP32CAM , you must make bittle follow a line. The line will be White line on a Black (dark) floor.

Fig. 8.49: Task: Follow path

8.10.4 Final Task

Fig. 8.50: Task: Final Task Lastenheft

Additionally:

1. Doxygen based code document

2. Working Video

140 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.51: Task: Final Task Instructions

3. Gitlab repository of codes shared with instructor

8.11 Teach Bittle New Skills

8.11.1 Understand skills in InstinctBittle.h.

EEPROM has limited (1,000,000) write cycles. So I want to minimize the write operations on it.

There are two kinds of skills: Instincts and Newbility. The addresses of both are written to the onboard EEP-
ROM(1KB) as a lookup table, but the actual data is stored at different memory locations:

• I2C EEPROM (8KB) stores Instincts.

The Instincts are already fine-tuned/fixed skills. You can compare them to “muscle memory”. Multiple Instincts are
linearly written to the I2C EEPROM only once with WriteInstinct.ino. Their addresses are generated and saved to the
lookup table in onboard EEPROM during the runtime of WriteInstinct.ino.

• PROGMEM (sharing the 32KB flash with the sketch) stores Newbility.

A Newbility is any new experimental skill that requires a lot of tests. It’s not written to the I2C nor onboard EEPROM,
but the flash memory in the format of PROGMEM. It has to be uploaded as one part of the Arduino sketch. Its address
is also assigned during the runtime of the code, though the value rarely changes if the total number of skills (including
all Instincts and Newbilities) is unchanged.

8.11. Teach Bittle New Skills 141

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.52: Bittle Instinct Summary

8.11.2 Example InstinctBittle.h

//a short version of InstinctBittle.h as example

#define BITTLE
#define NUM_SKILLS 4
#define I2C_EEPROM

const char rest[] PROGMEM = {
1, 0, 0, 1,
-30, -80, -45, 0, -3, -3, 3, 3, 75, 75, 75, 75, -55, -55, -55, -55,};
const char zero[] PROGMEM = {
1, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,};

const char crF[] PROGMEM = {
36, 0, -3, 1,
61, 68, 54, 61, -26, -39, -13, -26,
66, 61, 58, 55, -26, -39, -13, -26,
...
51, 81, 45, 72, -25, -37, -12, -25,
55, 76, 49, 68, -26, -38, -13, -26,
60, 70, 53, 62, -26, -39, -13, -26,
};

(continues on next page)

142 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

(continued from previous page)

const char pu[] PROGMEM = {
-8, 0, -15, 1,
6, 7, 3,
0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 30, 30, 30, 30, 30, 30, 5,␣
→˓0,
15, 0, 0, 0, 0, 0, 0, 0, 30, 35, 40, 29, 50, 15, 15, 15, 5,␣
→˓0,
30, 0, 0, 0, 0, 0, 0, 0, 27, 35, 40, 60, 50, 15, 20, 45, 5,␣
→˓0,
15, 0, 0, 0, 0, 0, 0, 0, 45, 35, 40, 60, 25, 20, 20, 60, 5,␣
→˓0,
0, 0, 0, 0, 0, 0, 0, 0, 50, 35, 75, 60, 20, 30, 20, 60, 6,␣
→˓0,
-15, 0, 0, 0, 0, 0, 0, 0, 60, 60, 70, 70, 15, 15, 60, 60, 6,␣
→˓0,
0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 95, 95, 60, 60, 60, 60, 6,␣
→˓1,
30, 0, 0, 0, 0, 0, 0, 0, 75, 70, 80, 80, -50, -50, 60, 60, 8,␣
→˓0,
};

#if !defined(MAIN_SKETCH) || !defined(I2C_EEPROM)
const char* skillNameWithType[] =
{"crI", "puI", "restI", "zeroN",};
const char* progmemPointer[] =
{cr, pu, rest, zero, };
#else
const char* progmemPointer[] = {zero};
#endif

Defined constants

define WalkingDOF 8

defines the number of DoF (Degree of Freedom) for walking is 8 on Bittle.

define NUM_SKILLS 4

defines the total number of skills is 4. It should be the same as the number of items in the list const char* skillName-
WithType[].

define I2C_EEPROM

Means there’s an I2C EEPROM on NyBoard to save Instincts.

Warning: If you are building your own circuit board that doesn’t have it, comment out this line. Then both kinds
of skills will be saved to the flash as PROGMEM. Obviously, it will reduce the available flash space for functional
codes. If there were too many skills, it may even exceed the size limit for uploading the sketch.

8.11. Teach Bittle New Skills 143

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Data structure of skill array

One frame of joint angles defines a static posture, while a series of frames defines sequential postures, such as a gait or
a behavior. Observe the following two examples:

const char rest[] PROGMEM = {
1, 0, 0, 1,
-30, -80, -45, 0, -3, -3, 3, 3, 75, 75, 75, 75, -55, -55, -55, -55,};

const char crF[] PROGMEM = {
36, 0, -3, 1,
61, 68, 54, 61, -26, -39, -13, -26,
66, 61, 58, 55, -26, -39, -13, -26,
...
51, 81, 45, 72, -25, -37, -12, -25,
55, 76, 49, 68, -26, -38, -13, -26,
60, 70, 53, 62, -26, -39, -13, -26,
};

They are formatted as:

Fig. 8.53: Skill Definition

rest is a static posture, it has only one frame of 16 joint angles. crF is the abbreviation for “crawl forward”. It has 36
frames of 8 (or 12, depending on the number of walking DOF) joint angles that form a repetitive gait. Expected body
orientation defines the body angle when the robot is conducting the skill. If the body is tilted from the expected angles,
the balancing algorithm will calculate some adjustments. Angle ratio is used when you want to store angles larger than
the range of -128 to 127. Change the ratio to 2 so that you can save those large angles by dividing 2.

Warning: A posture has only one frame, and a gait has more than one frames and will be looped over.

The following example is a behavior:

const char pu[] PROGMEM = {
-8, 0, -15, 1,
6, 7, 3,
0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 30, 30, 30, 30, 30, 30, 5,␣
→˓0, 0, 0,
15, 0, 0, 0, 0, 0, 0, 0, 30, 35, 40, 29, 50, 15, 15, 15, 5,␣
→˓0, 0, 0,
30, 0, 0, 0, 0, 0, 0, 0, 27, 35, 40, 60, 50, 15, 20, 45, 5,␣
→˓0, 0, 0,

(continues on next page)

144 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

(continued from previous page)

15, 0, 0, 0, 0, 0, 0, 0, 45, 35, 40, 60, 25, 20, 20, 60, 5,␣
→˓0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 50, 35, 75, 60, 20, 30, 20, 60, 6,␣
→˓0, 0, 0,
-15, 0, 0, 0, 0, 0, 0, 0, 60, 60, 70, 70, 15, 15, 60, 60, 6,␣
→˓0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 95, 95, 60, 60, 60, 60, 6,␣
→˓1, 0, 0,
30, 0, 0, 0, 0, 0, 0, 0, 75, 70, 80, 80, -50, -50, 60, 60, 8,␣
→˓0, 0, 0,
};

pu is short for “push up”, and is a “behavior”. Its data structure contains more information than posture and gait.

The first four elements are defined the same as before, except that the number of frames is saved as a negative value
to indicate that it’s a behavior. The next three elements define the repeating frames in the sequence: starting frame,
ending frame, looping cycles. So the 6, 7, 3 in the example means the behavior should loop from the 7th to the 8th
frame for 3 times (the index starts from 0). The whole behavior array will be executed only once, rather than looping
over like the gait.

Each frame contains 16 joint angles, and the last 4 elements define the speed of the transition, and the delay condition
after each transition:

1. The default speed factor is 4, it can be changed to an integer from 1 (slow) to 127 (fast). The unit is degree per
step. If it’s set to 0, the servo will rotate to the target angle by its maximal speed (about 0.07sec/60 degrees). It’s
not recommended to use a value larger than 10 unless you understand the risks.

2. The default delay is 0. It can be set from 0 to 127, the unit is 50 ms.

3. The 3rd number is the trigger axis. If it’s not 0, the previous delay time will be ignored. The trigger of the next
frame will depend on the body angle on the corresponding axis. 1 for the pitch axis, and 2 for the roll axis. The
sign of the number defines the direction of the threshold, i.e. if the current angle is smaller or larger than the
trigger angle.

4. The 4th number is the trigger angle. It can be -128 to 127 degrees.

Suffix for indicating Instinct and Newbility

You must upload WriteInstinct.ino to have the skills written to EEPROM for the first time. The following information
will be used:

const char* skillNameWithType[] =
{"crI", "puI", "restI", "zeroN",};
const char* progmemPointer[] =
{cr, pu, rest, zero, };

Warning: Notice the suffix I or N in the skill name strings. They tell the program where to store skill data and
when to assign their addresses.

Later, if the uploaded sketch is the main sketch OpenCat.ino, and if you are using NyBoard that has an I2C EEPROM,
the program will only need the pointer to the Newbility list

const char* progmemPointer[] = {zero};

8.11. Teach Bittle New Skills 145

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

to extract the full knowledge of pre-defined skills.

8.11.3 Define new skills and behaviors

Modify the existing skill template

There’s already a skill called “zeroN” in InstinctBittle.h. It’s a posture at the zero state waiting for your new definition.
You can first use the command mIndex Offset to move an individual joint to your target position, then replace the joint
angles (bold fonts) in array at once:

const char zero[] PROGMEM = {
1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,};

Because it’s declared as a Newbility and doesn’t require writing to I2C EEPROM, you can simply upload OpenCat.ino
every time you change the array (without uploading WriteInstinct.ino). You can trigger the new posture by pressing
7> on the IR remote, or type kzero in the serial monitor.

You can rename this skill, but remember to update the keymap of the IR remote.

Add more skills in InstinctBittle.h

You can add more skills in InstinctBittle.h. Remember to increase the skill number at the beginning of the file and add
the corresponding skill name and pointer in the skill list array.

A skill can be called from the serial monitor with the token ‘k’ command. For example, ksit will move Bittle to posture
“sit”.

You can also tune new skills by sending posture frames through the serial port, using the m, i, l tokens without uploading
a new sketch. After fine-tuning the skill, you can save it in the instinctBittle.h and upload it to the board as a newbility
or instinct.

Warning: Always check the actual code for the available skill names. We may alter the skill set as we iterate the
software.

This git repo (https://github.com/ger01d/kinematic-model-opencat) is a good starting point if you want to develop a
customized gait. If you are going to do some inverse kinematics calculation, you may use the following key dimensions
to build your model.

Automation

So far Bittle is controlled by the infrared remote. You make decisions for Bittle’s behavior.

You can connect Bittle with your computer or smartphone, and let them send out instructions automatically. Bittle will
try its best to follow those instructions.

By adding some sensors (like a touch sensor), or some communication modules (like a voice control module), you can
bring new perception and decision abilities to Bittle. You can accumulate those automatic behaviors and eventually
make Bittle live by itself!

Another direction is to set up a simulation for Bittle then test the model in reality. You may use this Unified Robot
Description Format (URDF) (https://github.com/AIWintermuteAI/Bittle_URDF) file for Bittle to set up an NVIDIA
Omniverse simulation.

146 Chapter 8. Bittle

https://github.com/ger01d/kinematic-model-opencat
https://github.com/AIWintermuteAI/Bittle_URDF

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.11.4 Understand OpenCat.h

The controlling framework behind Bittle is OpenCat, which I’ve been developing for a while. You can learn more from
posts available here (https://www.hackster.io/petoi/opencat-845129)

Fig. 8.54: Opencat Firmware Summary

Further reading abut code review: (https://www.petoi.camp/forum/software/flavien-opencat-code-reviews)

8.11.5 Tutorial on Creating New Skills

Preparation

Get familiar with the standard process of assembly, uploading the standard program Opencat.ino, and calibration.

Validate that the following functions work as expected.

• Press the button which is in the 2nd row, the 2nd column on the IR remote. Later we will use (2, 2) as the index.
You can also enter kbalance via serial port. Bittle should stand up and keep balance;

• Press the button which is in the 7th row, the 3rd column on the IR remote. Later we will use (7, 3) as the index.
You can also enter kzero via serial port. Bittle should enter a posture similar to the calibration state, which is
the “zero” skill in the program (as shown in the figure below).

Open the folder src/, create a backup file of instinctBittle.h as instinctBittle.hBAK.

The coordinate system of Bittle is shown in the figure below.

Yaw: Rotate around the Z-axis.

Pitch: Rotate around the Y-axis (nose up/down).

Roll: Rotate around the X-axis (tilt left/right).

8.11. Teach Bittle New Skills 147

https://www.hackster.io/petoi/opencat-845129
https://www.petoi.camp/forum/software/flavien-opencat-code-reviews

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.55: IR Controls
148 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.56: Zero state of Bittle

8.11. Teach Bittle New Skills 149

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.57: IMU Direction

150 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

For the legs, on the left side, counterclockwise is positive, clockwise is negative. On the right side, the rotation di-
rections are mirrored. The origin position and rotation direction of a single leg (upper/lower leg) around the joint are
shown in the 2nd figure.

The indexing order of all the joints is shown in the figure below:

Fig. 8.58: Bittle top view with motor index

The skill arrays are defined in WriteInstinct/instinctBittle.h, formatted as the figure below. Note the index starts from
0.

Fig. 8.59: Skill Definition

Total # of Frames defines the number of frames of a certain skill.

For example, rest is a static posture, it has only one frame of 16 joint angles.

crF is the abbreviation for “crawl forward”. It has 36 frames of 8 (or 12, depending on the number of walking DOF)
joint angles that form a repetitive gait.

Expected body orientation defines the body angle when the robot is conducting the skill. When all joints move to their

8.11. Teach Bittle New Skills 151

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

corresponding joint angle values in the current frame, the body inclination should naturally reach the defined expected
angle. If the body inclination deviates from the expected angle, the balance algorithm will calculate some adjustment
values for each leg servo , in order to keep the body tilt as close to the expected angle as possible.

Angle ratio is used when you want to store angles larger than the range of -128 to 127. Change the ratio to 2 so that
you can save those large angles by dividing 2.

Understand the format of a posture

Zero is a static posture, Find the zero array in instinctBittle.h:

const char zero[] PROGMEM = {
1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,};

Change some of these values to:

const char zero[] PROGMEM = {
1, 0, 0, 1,
70, 0, 0, 0, 0, 0, 0, 0, -60, 0, 0, 0, 60, 0, 0, 0,};

Fig. 8.60: Skill development Code Compare

Save the change, and upload the program OpenCat.ino to Bittle (Note: there is no need to upload writeinsict.ino or
opencat.h), after upload, press the button (9) which is in the 7th row, the 3rd column on the IR remote to trigger the
modified zero skill. You can see the posture is changed.

The new zero pose looks like this:

The first element (1) represents the total number of frames of the skill, 1 means it is a static posture.

The 4th element (1) represents the Angle ratio. It means all the following indexed joint angles are actual angles (because
each of them multiply by 1).

From the 5th to the 20th elements represent 16 indexed joint angles.

For Bittle, the 5th element (joint index 0) means the servo on Bittle’s neck rotates counterclockwise 70 (the unit is in
degrees). Bittle’s head turn to it’s left side.

The 13th element (joint index 8) means Bittle’s left upper leg rotates clockwise 60 (the unit is in degrees) around the
joint.

The 17th element (joint index 12) means Bittle’s left lower leg rotates counterclockwise 60 (the unit is in degrees)
around the joint.

All the other indexed joint angles remain 0 (the unit is in degrees).

You can define a new posture and upload it to the robot. Call the new posture with the IR remote or the serial monitor.

152 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.61: Zero State with Angle

Explain expected body orientations

Look at the example of:

const char balance[] PROGMEM = {
1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 30, 30, 30, 30, 30, 30,};

and

const char sit[] PROGMEM = {
1, 0, -30, 1,
0, 0, -45, 0, -5, -5, 20, 20, 45, 45, 105, 105, 45, 45, -45, -45,};

Fig. 8.62: Skill development Code Compare

The 2nd and 3rd elements represent Expected body orientation, corresponding to the roll angle and the pitch angle.

The unit is in degrees.

The sign of the number follows the right-handed spiral rule, look along the direction pointed by the axis arrow, clockwise
is positive, counterclockwise is negative.

With the gyro activated, rotate Bittle, when the body is tilted from the expected angles, the balancing algorithm will
calculate some adjustments to keep it in this posture.

8.11. Teach Bittle New Skills 153

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Explain angle ratio

Look at the example of

const char rc[] PROGMEM = {
-3, 0, 0, 2,
0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -88, -43, 67, 87, 42, -35, 42, 42, 15,␣
→˓0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, -83, -88, 87, 42, 42, 42, 42, -40, 15,␣
→˓0, 0, 0,
-8, -20, -11, 0, -1, -1, 0, 0, 18, 18, 18, 18, -14, -14, -14, -14, 10,␣
→˓0, 0, 0,
};

Angle ratio is designed for large angles out of the range -128~127.

The 4th element (2) represents the angle ratio. It means all the following all indexed joint angles real values is equal to
each of them multiply by the value of this angle ratio.

Understand the format of a gait

A series of frames defines sequential postures, such as a gait. Find the bk array in instinctBittle.h:

bk is the abbreviation for “back”.

The first four elements are defined the same as before, The first element (35) means it has 35 frames. Next are 35 frames
of 8 indexed joint angles that form a repetitive gait.

Understand the format of a behavior

Modify the zero skill as:

Fig. 8.63: Zero position

Upload the new zero skill and see the effect. It should be the same. (Later explanation a posture can be considered as
a behavior or gait with one frame.)

Copy the content of hi array to zero:

Change a few values:

Save and upload OpenCat.ino. Call the new zero skill to see the effect.

For example, the modified hi behavior:

The first four elements are defined the same as before, except that the number of frames is saved as a negative value
(-3) to indicate that it’s a behavior.

154 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.64: Skill development Code Compare

The 2nd element (0) means the Roll rotation body angle is 0 (The unit is in degrees). The 3rd element (-30) means the
Pitch rotation body angle is -30 (The unit is in degrees). If the body is tilted from the expected angles, the balancing
algorithm will calculate some adjustments. The 4th element (1) means all the following all indexed joint angles are
real values.

The next three elements define the repeating frames in the sequence: starting frame (1), ending frame (2), looping
cycles (6). So the 1, 2, 6 in the example means the behavior should loop from the 2nd to the 3rd frame for 6 times (the
index starts from 0). The whole behavior array will be executed only once, rather than looping over like the gait.

For behavior, each frame contains 16 indexed joint angles, and the last 4 elements define the speed of the transition,
and the delay condition after each transition:

1. The first number represents speed factor. The default speed factor is 4, it can be changed to an integer from 1
(slow) to 127 (fast). The unit is in degrees per step. If it’s set to 0, the servo will rotate to the target angle by
its maximal speed (about 0.07sec/60 degrees). It’s not recommended to use a value larger than 10 unless you
understand the risks. Here for this example, in the first frame, it is default value (4).

2. The 2nd number represents delay time. The default delay is 0. It can be set from 0 to 127, the unit is 50 ms. Here
for this example, in the first frame, it is 1.

3. The 3rd number represents the trigger axis. If it’s not 0, the previous delay time will be ignored. The trigger of
the next frame will depend on the body angle on the corresponding axis. 1 for the pitch axis, and 2 for the roll
axis. The sign of the number defines the direction in which the threshold is exceeded. In the first frame of this
example, it is 0, which means this trigger condition is not enabled.

4. The 4th number represents the trigger angle. It can be -128 to 127 degrees. The use of this value needs to be
combined with the third number. Only when the robot body rotates in the specified direction exceeds this trigger
angle, the action of the next frame can be triggered. In the first frame of this example, it is 0. If the third number
is 0, it means that the trigger condition is not enabled, and this value is invalid.

8.11. Teach Bittle New Skills 155

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Understand the memory structure

Explanation the locations:

There are two kinds of skills: Instincts and Newbility. The addresses of both are written to the onboard EEP-
ROM(1KB) as a lookup table, but the actual data is stored at different memory locations:

• I2C EEPROM (8KB) stores Instincts.

The Instincts are already fine-tuned/fixed skills. You can compare them to “muscle memory”. After uploading the
“parameters” firmware, multiple instinctive Instincts write linearly to the I2C EEPROM. Their addresses are generated
during the upload of the “parameters” firmware and saved to a lookup table in the onboard EEPROM.

• Flash (sharing the 32KB flash with the program) stores Newbility.

A Newbility is any new experimental skill that requires a lot of tests. It’s not written to the I2C nor onboard EEPROM,
but the flash memory in the format of PROGMEM. It has to be uploaded as one part of the Main function firmware.
Its address is also assigned during the runtime of the code, though the value rarely changes if the total number of skills
(including all Instincts and Newbilities) is unchanged.

The implementation code:

The first section is active when uploading “parameters” firmware. It contains all the skills’ data and pointers. The skill
names contain a suffix, “N” or “I” to indicate whether it’s a Newbility or Instinct. The Instinct will be saved to the
external I2C EEPROM while the Newbility will be saved to the flash. The address of all the skills will be saved to the
onboard EEPROM.

The second section is active when uploading Main function firmware. Because the Instincts are already saved in the
external EEPROM, their data is omitted to save space. The Newbility will be saved to the flash with the upload so you
can update them in the MAIN_SKETCH section . It’s very useful if you are still tuning a new skill.

In the example code, only zero is defined as a Newbility so you don’t need to re-upload “parameters” firmware for
experiments.

Create a new behavior

What if we want to add more skills with customized names and button assignments?

If you want to add more skills, you can refer to the implementation of serial commands (the figure above) and keymap
(the 1st figure) in the program code.

Add an example of a Newbility test and assign it to a button on the IR remote. Upload the skill and call it with both IR
remote and serial monitor.

Modify a few fields of test to make it an Instinct. Call the behavior with the IR remote or serial monitor.

Warning: Note: The left side of the above picture is to add a new skill (Newbility); the right side is to add a new
instinct (Instinct).

Remember to add 1 to the number of skills at the beginning of the header file.

Then you can call this test by entering ktest in the serial monitor. You can also call it from the IR remote if you replace
a button definition in OpenCat.h.

156 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.65: Serial Commands

8.11. Teach Bittle New Skills 157

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.66: Skill development Code Compare

Tune skills in realtime

You need to understand the above structure to store a skill on the robot. However, when tuning the skills, things can
be easier. To do this, you can connect your computer with the robot through the USB or Bluetooth connector. Then
you can send string commands that define the joint angles. The program on the NyBoard will listen and perform the
instructions in real-time. In the folder SerialMaster , you can find the ardSerial.py to play the role of Arduino IDE’s
serial monitor, and you can also write scripts to control Bittle to do more complex movements. Some use cases are
listed in example.py.

Please refer to Controlling with Python section for more details.

8.12 Controlling Bittle (Advanced)

Danger: CONTENT UNDER REVIEW. Please ask the instructor before continuing with this section.

This section will described advanced methods to control your robot.

8.12.1 Using WiFi Adaptor

About the Sample Code: The sample code is a simple web server example, including 2 HTML pages. The two pages
are stored in two header files in the form of string constants. The advantage is to avoid calling the client.print function
constantly.

Set Up the WiFi Networks: Before we start our web server, we should configure the WiFi to connect to your local
area network(LAN). We used to enter the WiFi SSID and password in the program, but it is very inconvenient while we
need to change the network environment. We use the WiFi manager library to configure the WiFi information through
web.

// WiFiManager
WiFiManager wifiManager;

(continues on next page)

158 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

(continued from previous page)

// Start WiFi manager, default gateway IP is 192.168.4.1
wifiManager.autoConnect("Bittle-AP");

Web server: Create a new web server and configure port 80 (commonly used HTTP server port)

ESP8266WebServer server(80);

Configure 3 HTTP service handler: The HTTP response function is to handle the incoming HTTP requests.

void handleMainPage() {
//Serial.println("GET /");
server.send(200, "text/html", mainpage);
}
void handleActionPage() {
//Serial.println("GET /actionpage");
server.send(200, "text/html", actionpage);
}

The handleMainPage and handleActionPage response 200 (OK) and corresponding web HTML code for your web
browser (client).

void handleAction(){
String argname = server.arg("name");

if(argname == "gyro"){ // gyro switch
Serial.print("g");

}

The HandleAction function is slightly different. This is an HTTP request processing function with parameter passing.
When the parameter is “gyro”, the serial port of the WiFi module sends out the command (“g”, switch IMU), so that
our Bittle will execute the command. So how is this “gyro” parameter generated and passed? Because we sent such an
HTTP request with a value to the server:

http://IP address or DomainName/action?name=gyro

The server parses the action parameter by the function and resolves that the name is “gyro”. We can directly enter this
URL in the browser and execute it with the keyboard. The more common method is to add a link to the “Walk” button
on the ActionPage web page. When the gyro button is pressed, the above URL will be sent to the host. The complete
walk button configuration is as follows:

<button style="width: 25%" onclick="location.href='/action?name=gyro'">GyroOn/Off</
→˓button>

After parsing the “name” parameter, we send the actionpage again.

server.send(200, "text/html", actionpage);

We bond the handler method with the corresponding URLs.

server.on("/", handleMainPage);
server.on("/actionpage", handleActionPage);
server.on("/action", handleAction);

8.12. Controlling Bittle (Advanced) 159

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Start the Web Server:

server.begin();
Serial.println("HTTP server started");

Handle Client Requests:

void loop(void){
server.handleClient();
}

8.12.2 Using Python Scripts

The list testSchedule in example.py is used to test various serial port commands. Run the following script code to see
the execution effect of each serial port command in the list:

for task in testSchedule:
wrapper(task)

You can also refer to the content of the stepUpSchedule list (in ..\serialMaster\demos\stepup.py), write a list of behaviors
according to your actual needs, and realize your creativity.

Note: When running the scripts under the path of serialMasterdemos, you must first use the “cd demos” command to
enter the path where the scripts are located (\serialMaster\demos), and then use the python3 command to run the script
(e.g. “python3 stepup.py”)

Explanation of the serial port commands in the list testSchedule:

[‘kbalance’, 2]

• ‘kbalance’ indicates the command to control Bittle to stand normally

• 2 indicates the postponed time after finishing the command, in seconds

[‘d’, 2]

• d indicates the command to put the robot down and shut down the servos

• 2 indicates the postponed time after finishing the command, in seconds

[‘c’, 2]

• c indicates the command to enter calibration mode

• 2 indicates the postponed time after finishing the command, in seconds. After these motion commands are
completed, the next command will be executed after a 2-second delay.

[‘c’, [0, -9], 2]

• c indicates the command to enter calibration mode

• 0 indicates the index number of joint servo

• -9 indicates the rotation angle, the unit is degree

• 2 indicates the postponed time after finishing the command, in seconds

Using this format, you can enter the calibration mode to calibrate the angle of a certain joint servo. Note: If you want
the correction value in this command to take effect, you need to enter the “s” command after executing this command.

The meaning of this example: the joint servo with serial number 0 rotates -9 degrees. After these motion commands
are completed, the next command will be executed after a 2-second delay.

160 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

[‘m’, [0, -20], 1.5]

• m indicates the command to control the rotation of the joint servo

• 0 indicates the index number of joint servo

• -20 indicates the rotation angle (this angle refers to the origin, rather than additive) the unit is degree

• 1.5 indicates the postponed time after finishing the command, in seconds. It can be a float number.

[‘m’, [0, 45, 0, -45, 0, 45, 0, -45], 2]

Using this format, multiple joint servo rotation commands can be issued at one time, and these joint servo rotation
commands are executed SEQUENTIALLY, not at the same time. The joint angles are treated as ASCII characters, so
they can be entered directly by humans.

The meaning of this example is: the joint servo with index number 0 is first rotated to the 45 degree position, and then
rotated to the -45 degree position, and so on. After these motion commands are completed, the next command will be
executed after a 2-second delay.

[‘i’, [8, -15, 9, -20], 2]

Using this format, multiple joint servo rotation commands can be issued at one time, and these joint servo rotation
commands are executed AT THE SAME TIME. The joint angles are treated as ASCII characters, so they can be entered
directly by humans.

The meaning of this example is the joint servos with index numbers 8, 9 are rotated to the -15, -20 degree positions
at the same time. After these motion commands are completed, the next command will be executed after a 2-second
delay.

[‘M’, [8, 50, 9, 50, 10, 50, 11, 50, 0, 0], 3]

• M indicates the command to rotate multiple joint servos SEQUENTIALLY. The angles are encoded as
BINARY numbers for efficiency.

• 8, 9, 10, 11, 0 indicate the index numbers of joint servos

• 50, 50, 50, 50, 0 indicate the rotation angle (this angle refers to the origin, rather than additive), the unit is
degree

• 3 indicates the postponed time after finishing the command, in seconds

[‘I’, [20, 0, 0, 0, 0, 0, 0, 0, 45, 45, 45, 45, 36, 36, 36, 36], 5]

• I indicates the command to control all joint servos to rotate AT THE SAME TIME (currently the command
supports 16 degrees of freedom, that is, 16 servos) . The angles are encoded as BINARY numbers for
efficiency.

• 20,0,0,0,0,0,0,0,45,45,45,45,36,36,36,36 indicate the rotation angle of each joint servo corresponding to
0-15 (this angle refers to the origin, rather than additive), the unit is degree

• 5 indicates the postponed time after finishing the command, in seconds

[‘b’, [10,2], 2]

• b indicates the command to control the buzzer to beep

• 10 indicates the music tone

• 2 indicates the lengths of duration, corresponding to 1/duration second

• 2 indicates the postponed time after completing the tone, in seconds

[‘b’,[0, 1, 14, 8, 14, 8, 21, 8, 21, 8, 23, 8, 23, 8, 21, 4, 19, 8, 19, 8, 18, 8, 18, 8, 16, 8, 16, 8, 14, 4],3]

• b indicates the command to control the buzzer to beep

8.12. Controlling Bittle (Advanced) 161

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• 0, 14, 14, 21. . . indicate the music tones

• 1, 8, 8, 8 indicates the lengths of duration, corresponding to 1/duration second

• The last 3 indicates the postponed time after the music melody is played, in seconds

Using this format, multiple tone pronunciation commands can be issued at once, and a simple melody can be played.

The meaning of this example is: play a simple melody, and delay 3 seconds after the music melody is played.

ck = [
-3, 0, 5, 1,
0, 1, 2,
45, 0, 0, 0, 0, 0, 0, 0, 45, 35, 38, 50, -30, -10, 0, -20, 6, 1, 0, 0,
-45, 0, 0, 0, 0, 0, 0, 0, 35, 45, 50, 38, -10, -30, -20, 0, 6, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 30, 30, 30, 30, 30, 30, 30, 30, 5, 0, 0, 0,
]

[‘K’, ck, 1]

• ‘K’ indicates the skill data to send to Bittle in realtime

• The skill array is sent to the robot on the go and executed locally on the robot

• You may insert the skills in the skill library or InstinctX.h in this format

8.12.3 Creating New Skills

Fig. 8.67: InstinctBittle.h file Summary

162 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.68: OpenCat Framework Summary

8.13 Controlling Bittle (Codecraft)

8.13.1 Introduction

Codecraft is a graphical programming software. It is based on the Scratch 3.0 language and enables programming by
simply “drag & drop” of predefined blocks. It is available as a web and downloadable application.

The web version is available at (https://ide.tinkergen.com/). Here you can make codes but to upload to your hardware,
you would need a client application for your PC. You can find more information here: (https://www.yuque.com/
tinkergen-help-en/codecraft/assistant?language=en-us)

To download complete software, from the following link: (https://ide.tinkergen.com/download/en/). This includes
IDE and uploader for your hardware.

When you open the application, you have to select the hardware you will use for programming. In our case, it’s Bittle.
After that you will be redirected to the programming UI.

For detailed information about UI elements, visit (https://www.yuque.com/tinkergen-help-en/codecraft/tour_overview
)

Warning: Note that Codecraft doesn’t support OpenCat 2.0. You’d need to use OpenCat 1.0 instead. You can find
the details here: https://github.com/PetoiCamp/OpenCat/tree/1.0

8.13. Controlling Bittle (Codecraft) 163

https://ide.tinkergen.com/
https://www.yuque.com/tinkergen-help-en/codecraft/assistant?language=en-us
https://www.yuque.com/tinkergen-help-en/codecraft/assistant?language=en-us
https://ide.tinkergen.com/download/en/
https://www.yuque.com/tinkergen-help-en/codecraft/tour_overview
https://github.com/PetoiCamp/OpenCat/tree/1.0

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.69: Codecraft UI Guide

Upload Code

To upload the code from Codecraft, you would need to connect the USB-Adaptor (First choice). You can also use a
Bluetooth Adaptor.

From the Device / Stage section, use the Connect button to connect to your device. Then use the Upload button to
upload code.

Monitor Serial Values

From the Device / Stage section, use the Connect button to connect to your device. Then use the Serial monitor
button to upload code.

Warning: If the walking movements in the following tutorials are not working as intended. Try re-calibrating the
motors. Visit the Calibration section for more information.

8.13.2 Programming with Blocks

Block Shapes

There are five different block shapes in Codecraft:

• Hat Block

• Stack Block

• Boolean Block

164 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Reporter Block

• C Block

1. Hat Block Hat blocks are the blocks that start every script. The rest of the blocks should be attached to top hat
block. Please note that different hat blocks start each program code in different ways.

2. Stack Block Stack blocks are the blocks that perform the main commands. They are shaped with a notch at the top
and a bump on the bottom — this is so blocks can be placed above and below them.

3. Boolean Block A Boolean block can be placed in corresponding hexagon slots and could not be used separately.
Boolean is a condition (true or false).

4. Reporter Block Reporter blocks can be placed anywhere that needs data and could not be used separately. As long
as there is a slot corresponding to a reporter block, it can be placed as needed. Reporter blocks can hold numbers and
strings.

5. C Block C blocks are blocks that take the shape of “C’s”. Also known as “Wrap blocks”, these blocks loop the
blocks within the Cs or check if a condition is true.

Fig. 8.70: Codecraft Block Guide

Basics

To begin programming, you would need a Setup & Loop block. You can grab one from System block
catalogue. This resembles the two sections of an Arduino code.

• The Setup block must include code line which are required to be executed only once such as initializing
new hardware or defining pin behaviors (whether input pin or output pin).

• The Loop block includes code lines which need to be called repeatedly. The sequence of execution if from
top to bottom. This can be used for turning LED on and off after every 1 second.

The simplest code for movement includes at least three blocks:

• setup-loop block

• set movement block

• execute movement block

The movement blocks have many lines of codes. Each line represents a set of joint angles which is sent from the Bittle’s
memory to the motors. The block has the required angle list to complete 1 cycle of walk.

Thus to have a continuous walking movement, you need to repeat the block for some time. In terms of Bittle,
this execution differs from other wheel based surface robots. In wheel based surface robots, you only need to
set the motors on and off to control the movement. But in case of Bittle or other Legged robots, you need to
repeat the movement action for certain amount. An example of moving forward and backward is shown below.
In this example, the movements are repeated for 1000 times before changing the action.

8.13. Controlling Bittle (Codecraft) 165

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.71: Example: Blink & Initial posture of Bittle

Fig. 8.72: Example: Basic Movements

166 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.73: Servo angles for forward movement

8.13. Controlling Bittle (Codecraft) 167

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.74: Example: Multiple Actions

168 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Variables

To define custom variables, you can add new variables using Variables section in block catalogue. The current version
only supports variables of type float.

My Blocks

To create custom function block, use the My Blocks section in block catalogue. You can provide 2 type of inputs for
the function block; a float value and a boolean value.

Fig. 8.75: Example: Variables & Blocks

IR-Remote Control

IR Remote can be used in combination to the movement commands to control the robot. The key mapping in reference
to Codecraft is provided below:

To include IR library in your code, you will need to add a Infrared Receiver started block in your code. This adds
the required library and enables the commands related to that library. An example to stop Bittle using IR Remote is
shown below. The robot will walk in forward direction until Play/Pause button is pressed on the remote.

You can even use serial monitor to print the raw IR codes of buttons pressed on remote.

Advanced Control

Custom Skills

You can create custom skills for your Bittle. To do so, from the Codecraft UI click on Add Extension. Select Create
Skill from the Extension Library pop-up. A new catalogue will be added named as Create Skill.

Inside Create Skill, you can set the Joint angles for all the motors on your robot and can create a sequence of different
positions to form a complete action just like the walking forward example shown earlier.

8.13. Controlling Bittle (Codecraft) 169

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.76: Example: IR Remote Codecraft

Fig. 8.77: Example: IR Remote Demo

170 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.78: Example: IR Remote Codecraft

Example Block Codes

References

1. Codecraft website https://ide.tinkergen.com/

2. Codecraft tutorials https://www.yuque.com/tinkergen-help-en/codecraft/overview

3. Codecraft Bittle tutorials https://www.yuque.com/tinkergen-help-en/bittle_course/preface

8.14 Problem Solving

8.14.1 Buzzer Sounds

The robot will keep pausing its movements with beeping sounds when the battery is low. The battery needs to be
charged using a a 5V micro-USB cable. Considering safety, the battery won’t supply power during charging.

Buzzer sound meaning:

Sound type Occasion Explanation
Short melody Power on or reboot The program starts successfully
Short beep During use The program receives a command
Repetitive melody During use and pausing the movements The battery is low or unconnected

8.14. Problem Solving 171

https://ide.tinkergen.com/
https://www.yuque.com/tinkergen-help-en/codecraft/overview
https://www.yuque.com/tinkergen-help-en/bittle_course/preface

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.79: Example: Ultrasonic Sensor Codecraft

172 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.80: Example: Passive infrared (PIR) Sensor Codecraft

8.14. Problem Solving 173

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.14.2 Download Base Firmware

The OpenCat repository consists of various codes from module test to base firmware.

Warning: After downloading Please DO NOT modify any file until specifically mentioned in the tutorial.

To begin with download,

1. Copy the link and open it in a browser, the download should start automatically -> https://github.com/
PetoiCamp/OpenCat/archive/61fb3efe670c947791739dba86d87118f6021bb8.zip

2. Extract the files and rename the folder to OpenCat. Please check that the files are in following structure
/OpenCat/OpenCat.ino

Fig. 8.81: Required file structure

8.14.3 Install Base Firmware

If in case you are unable to configure your device or its not functioning as intended, try installing the firmware again.

Warning: Before proceeding, please confirm that all wire connections are OK and your code is error free.

If the problem is in your code, the base firmware won’t be able to fix it.

Follow the steps below to install base firmware:

1. Open Arduino IDE / Platform IO.

2. Open OpenCat.ino inside your IDE.

3. In the code, select your robot and board version. Uncomment the required lines by removing // and keep
the rest of the code as it is.

4. Comment out #define MAIN_SKETCH (if you want to configure your board) by adding // in front of the
line.

5. Set the Board configurations in IDE (Tools-> Board) to Arduino UNO and select the correct COM port.

6. Upload the code and open serial monitor.

174 Chapter 8. Bittle

https://github.com/PetoiCamp/OpenCat/archive/61fb3efe670c947791739dba86d87118f6021bb8.zip
https://github.com/PetoiCamp/OpenCat/archive/61fb3efe670c947791739dba86d87118f6021bb8.zip

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

7. Wait until you see Ready on serial monitor.

If your calibration is successful, Uncomment #define MAIN_SKETCH to make it active. Upload the code again after
that.

8.14.4 Problem Loading Base Firmware

There can be multiple reasons for this, but the most common is incorrect file structure. This file corresponds to the
source code downloaded from the link provided. Please consider checking the file structure and comparing it with the
structure provided in Download Base Firmware.

8.14.5 Problem Uploading Program

Please check if the I2C switch on the main board is in correct mode. The I2C switch changes the master of I2C devices
(gyro/accelerometer, servo driver, external EEPROM). On default “Arduino”, NyBoard uses the onboard ATmega328P
as the master chip. On “RPi”, NyBoard uses external chips connected through the I2C ports (SDA, SCL) as the master
chip.

Fig. 8.82: I2C switch

8.14.6 Problem with Device COM Port

If you cannot find the port for your device on IDE, check the device manager if your device is connected properly and
you have the required device driver installed.

The driver required is CH340. You can download it from here -> http://www.wch-ic.com/downloads/CH341SER_ZIP.
html

8.14.7 Problem with Serial Port Permission

If you are using LINUX system and have issues uploading or connecting to COM port, please follow the instructions
mentioned here -> https://playground.arduino.cc/Linux/All/#Permission

8.14. Problem Solving 175

http://www.wch-ic.com/downloads/CH341SER_ZIP.html
http://www.wch-ic.com/downloads/CH341SER_ZIP.html
https://playground.arduino.cc/Linux/All/#Permission

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.83: Device manager

176 Chapter 8. Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 8.84: Port selection in IDE

8.14.8 Individual Module Test

You can test individual modules of the robot by uploading the codes available under the folder ModuleTests. To do
do, open the .ino file from the required test module folder and upload the code by keeping the board setting mentioned
earlier.

It is suggested to begin the module test with testBuzzer.ino code.

8.14.9 Problem with Python Packages

The Terminal is a built-in interface on Mac or Linux machines. The equivalent environment on Windows machines is
called the Command-Line Tool (CMD). It’s recommended that you install Anaconda to manage your Python environ-
ment. It can also provide the Powershell as a Terminal for older Windows machines.

The python scripts work on Python V3. Install pip if not already installed -> https://pip.pypa.io/en/stable/installation/

Install the following packages using pip:

• pyserial

• pillow

pip3 install pyserial pillow

To run the code:

• In the Terminal, use the cd command to navigate to the OpenCat/pyUI/ folder. You can use the Tab key to
auto-complete the path name.

• After entering the pyUI/ folder, enter ls and ensure you can see the UI.py and other python source codes
listed.

• Enter python3 UI.py.

8.14. Problem Solving 177

https://pip.pypa.io/en/stable/installation/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

8.14.10 Problem Uploading on ESP32 Camera

There are few things to check:

• Correct hardware board selected in Tools menu

• GPIO 0 is set to GND when uploading. Reset once after doing that to enable download mode.

• Hardware is 5V compatible. Try switching to 5V input from FTDI programmer.

• Brownout detector was triggered? Include these header files:

#include "soc/soc.h" //disable brownout problems
#include "soc/rtc_cntl_reg.h" //disable brownout problems

Include this inside setup()

WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); //disable brownout detector

If you have other issues, check the following link (https://randomnerdtutorials.com/esp32-cam-troubleshooting-guide/
)

You can also use Arduino UNO to upload code to your ESp32 CAM module.

Connect the following pins:

ESP32 CAM Arduino UNO
5V 5V
GND GND
UnT Tx (PIN 1)
UnR Rx (PIN 0)
IO0 GND (when uploading)

Steps to use sample code:

• Upload BareMinimun code to your UNO.

• Select the following settings in Tools menu.

Parameters Settings
Board ESP32 Wrover Module
Upload Speed 115200
Flash Frequency 40 Mhz
Partition Scheme Huge APP

• Now you can upload your code to your esp32cam.

178 Chapter 8. Bittle

https://randomnerdtutorials.com/esp32-cam-troubleshooting-guide/

CHAPTER

NINE

DER ROBOTERHUND BITTLE

In diesem Kurs geht es darum, einen Roboterhund mit individuellen Fähigkeiten zu entwickeln.

9.1 Learning Outcome

9.1.1 Einführung

Menschen haben Roboter erfunden, damit sie sehr langweilige oder schwere Arbeit nicht mehr selbst erledigen müssen.
Ein Roboter ist in der Lage komplexe Aktionen automatisch udn sehr genau auszuführen. Roboter können von einem
externen Steuergerät wie z.B. einem Joystick () geführt werden oder die Steuerung befindet sich innerhalb des Roboters
wie das Gehirn bei einem Menschen().

In diesem Kurs geht es unsere Roboterhunde “Bittle” und ihre Erziehung. Mit deiner Programmierung können sie
Aktionen ausführen oder Kunststücke machen.

9.1.2 Was du dafür brauchst

Hardware

• Bittle Roboterhund

Software

• Codecraft (https://ide.tinkergen.com/)

9.2 Einführung

Schaut euch zunächst die verschiedenen Arten von Robotern an:

https://youtu.be/XN_nPC4mD8k

Wenn der Link nicht funktioniert, bitte hier klicken: https://youtu.be/XN_nPC4mD8k

Coole Roboter, oder? Auch die Programmierung ist nicht so schwierig. Man benötigt nur etwas Übung und Geduld .

179

https://ide.tinkergen.com/
https://youtu.be/XN_nPC4mD8k
https://youtu.be/XN_nPC4mD8k

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Todo: Diskutiere die folgenden Fragen mit deinem Nachbarn: 1) Wo werden Roboter eingesetzt? 2) Wie bewegen
sich die Roboter im dem dargestellten Video? 3) Hast du schonmal einen 4-beinigen Roboter wie eine Katze oder einen
Hund gesehen? 4) Wofür könnte man einen 4-beinigen Roboter nutzen?

Jetzt machen wir eine kurze Videopause . Das Video wurde an der DARPA Robotics Challenge (DRC) gemacht. Bei
der Challenge sollten Roboter Rettungsaktionen ausführen. Ohne die richtige Programmierung ist für einen Roboter
nichts selbstverständlich. Der Roboter kann nicht einmal von selbst das Gleichgewicht halten oder etwas greifen. Aber
überzeuge dich selbst..

https://youtu.be/g0TaYhjpOfo

Wenn der obige Link nicht funktioniert, bitte hier klicken: https://youtu.be/g0TaYhjpOfo

9.3 Grundlagen von Robotern und Programmierung

Jetzt kommen wir zu Bittle, unserem Roboterhund. In diesem Teil erhälst du Informationen über den Hund und lernst,
wie ein Programmierer zu denken. Bittle sieht aus und funktioniert wie ein echter Hund.

Fig. 9.1: Hi, ich bin Bittle.

Bittle ist zu vielen Dingen fähig, sieh dir die kurze Demo an.

https://youtu.be/jJhdiQQT1o41

Wenn der obige Link nicht funktioniert, klicken Sie hier: https://youtu.be/jJhdiQQT1o4

Um solche Roboter herzustellen, benötigt man einige wichtige Komponenten:

• Control Board -> Dies ist das Gehirn des Roboters. Du gibst dem Board mit deiner Programmierung
Anweisungen und es wird diesen Anweisungen folgen.

180 Chapter 9. Der Roboterhund Bittle

https://youtu.be/g0TaYhjpOfo
https://youtu.be/g0TaYhjpOfo
https://youtu.be/jJhdiQQT1o41
https://youtu.be/jJhdiQQT1o4

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Motoren -> Mit den Motoren kann sich Bittle bewegen. Sie wandeln elektrische Energie (Strom) in mech-
anische Energie (Drehmoment) um. Sie sind in verschiedenen Größen erhältlich.

• Batterie -> Dies ist die Energiequelle für Roboter. Dadurch kann sich Bittle frei bewegen, ohne dass er an
eine Steckdose angeschlossen werden muss.

Der digitale Zwilling des Roboterhundes spielt auch bei der Herstellung des Hundes eine Rolle. Der digitale Zwilling
ist die digitale Darstellung des Hundes und beschreibt alle seine Komponenten.

Fig. 9.2: Das sind meine Bestandteile!

Versuche einmal Bittle zu sagen, dass er sich setzen soll. Hat es etwas bewirkt?

Wahrscheinlich nicht. Derzeit versteht Bittle die Anweisungen nicht. Du musst dem Hund beibringen, was bei dem
Befehl “Sitz!” machen soll. Wenn du Computern oder Robotern Anweisungen gibst, die sie verstehen und ausführen,
wird das Programmieren genannt.

Ein Programm ist eine Liste von Anweisungen, die dann von dem Roboter ausgeführt werden. Oft ist es schwierig
die richtige Reihenfolge der Anweisungen zu erkennen. Man verwendet dann Flussdiagramme, um den Prozess zu
planen. Ein Flussdiagramm zeigt einen Entscheidungsprozess, der ein bisschen wie ein Code aufgebaut ist. Wenn du
zum Beispiel eine Tasse Tee zubereiten möchtest, dann könntest du ein Flussdiagramm wie dieses erstellen.

Die Bedeutung der Symbole ist unten angegeben:

Ein weiteres Beispiel für ein Flussdiagramm kann wie folgt sein: Stell dir vor, du müsstest eine Straße überqueren
und es gibt keine Ampel auf der Straße. Du musst also überprüfen, ob die Straße leer ist und ob du sie überqueren
kannst. Wenn ein Auto in der Nähe der Kreuzung ist, dann wartest du solange, bis es wieder sicher aussieht. Dies wird
Entscheidungsprozess genannt. Versuche, ein Flussdiagramm für die Situation mit der Straßenkreuzung zu zeichnen.

9.3. Grundlagen von Robotern und Programmierung 181

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.3: Flow chart

182 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.4: Flow chart Symbole

Der Entscheidungsprozess spielt eine wichtige Rolle bei der Programmierung. Bevor du mit einem Projekt
oder einer Programmieraufgabe beginnst, solltest du dir folgende Fragen stellen:

1. Was sind die Ziele?

2. Was weiß ich über das Projekt?

3. Was muss ich lernen, um diese Aufgabe zu erledigen?

4. Kann ich eine große Anweisung in kleine, einfache Anweisungen zerlegen?

9.4 Programmierung

In diesem Teil lernst du Bittle zu programmieren. Aufgeregt?

Um den Roboterhund zu programmieren, verwendest du die Codescraft-Software. Die Schnittstelle sieht so aus,

Zum Programmieren kannst du den Blockkatalog öffnen und einen Block in den Arbeitsbereich ziehen. Gehe die
folgende Anleitung durch, damit du mit dem Programmieren beginen kannst.

9.4.1 Roboter mit PC verbinden

Um das Programm auf dem Roboter hochzuladen, musst du Bittle an einen PC anschließen. Du benötigst
folgende Dinge:

• Roboterhund

• USB-Kabel

• USB-Anschluss für Roboter (USB-TTL-Konverter)

Folge den unteren Schritten:

9.4. Programmierung 183

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.5: Codecraft UI (Benutzeroberfläche)

Fig. 9.6: Körper und Deckel.

184 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

1. Entferne die Abdeckung des Roboters.

2. Stecke die Micro-USB-Seite des Kabels in den USB-Stecker und verbinde den USB-Stecker mit dem
Roboterhund.

Fig. 9.7: USB Verbindung.

3. Verbinde das andere Ende des USB-Kabels mit dem PC.

4. Unter dem Hund befindet sich ein kleiner Knopf. Halte den Knopf einige Sekunden lang gedrückt, bis ein
blaues Licht neben dem Knopf leuchtet. So wird der Roboter eingeschaltet.

5. Öffne die Codecraft-Software über die Taskleiste.

6. Wähle Bittle in der Hardwareauswahl aus.

7. Klicke auf der linken Seite auf die Schaltfläche Verbinden. Wähle dein Gerät aus der Liste aus und bestätige
mit OK.

8. Du siehst ein Pop-Up-Fenster, das die Verbindung bestätigt. Wenn nicht, dann wende dich an einen Be-
treuer.

Sehr gut, der Hund ist mit dem Programm verbunden! Lies dir noch kurz eine Einleitung zu den Blöcken durch, dann
kannst du mit dem Programmieren beginnen.

9.4. Programmierung 185

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.8: Batterietaste ein- und ausschalten

Fig. 9.9: Codecraft icon (Symbol)

186 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.10: Bittle icon im Codecraft

9.4. Programmierung 187

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.11: Verbindungstest.

188 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.12: Verbindung erfolgreich.

9.4. Programmierung 189

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

9.4.2 Programmierung mit Bausteinen:

Um den Roboter zu programmieren werden Blöcke verwendet. Blöcke haben verschiedene Formen und Farben. Hinter
den Blöcken sind einzelne Code-Schnipsel. Der PC verwendet ein anderes Programm, um die einzelnen Schnipsel zu
einem Programm zu fügen und auf den Roboter hochzuladen. Die Blöcke sind also nur eine Hilfestellung um dir das
Programmieren zu erleichtern.

Blockformen

Es gibt fünf verschiedene Blockformen in Codecraft:

• Kopfblock (Hat Block)

• Stapelblock (Stack Block)

• Boolescher Block (Boolean Block)

• Reporter-Block (Reporter Block)

• C-Block

Fig. 9.13: Codecraft-Blockanleitung.

Beschreibung:

1. Kopfblock: Dies sind die Blöcke, die jedes Skript starten. Der Rest der Blöcke sollte am Kopfblock befestigt
werden. Bitte beachte, dass verschiedene Kopfblöcke jeden Programmcode auf unterschiedliche Weise
starten.

2. Stapelblock: Diese Blöcke führen die Hauptbefehle aus. Sie sind oben mit einer Kerbe und unten mit einer
Erhebung geformt, damit viele Stapelblöcke aufeinander gestapelt werden können.

3. Boolescher Block: Sie können in entsprechenden sechseckigen Löchern platziert werden und können nicht
ohne einen passenden anderen Block verwendet werden. Mit Boolean ist eine Bedingung (wahr oder falsch)
gemeint. Erinnere dich an das Beispiel mit der Straßenkreuzung. Hier wurden auch boolsche Bedingungen
verwendet, um eine Entscheidung zu finden.

4. Reporter-Block: Reporter-Blöcke können überall dort platziert werden, wo Daten benötigt werden. Du
kannst sie wie die Booleschen Blöcke nicht einzeln verwenden. Wenn es einen Steckplatz gibt, der einem
Reporterblock entspricht, kann er nach Bedarf platziert werden. Reporter-Blöcke können Zahlen und Ze-
ichenfolgen enthalten.

5. C-Block: Diese Blöcke haben die Form eines „C“. Diese Blöcke wiederholen die Anweisungen innerhalb
des Cs solange, wie ihre Bedingung wahr ist. Die Bedingung kann am Anfang oder an Ende des Blocks
stehen und wird von dir festgelegt. Du könntest dem Hund zum Beispiel mit dem C-Block die Anweisung
geben: “Laufe solange gerade aus, bis ich eine Taste auf der Fernbedienung drücke.”

Ein letzter Abschnitt, dann kannst du endlich mit Bittle spielen.

190 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

9.4.3 Katalog

Es gibt etwa 10 Kataloge, in denen die Blöcke nach ihrer Anwendung unterteilt sind. Die wichtigsten Kataloge
sind:

• System: Enthält Blöcke wie Setup & Loop, Buzzer-Blöcke und andere integrierte Hardware-Blöcke. Du
brauchst diese Blöcke zum Starten des Programms.

• Skill: Enthält Blöcke mit vordefinierten Fertigkeiten wie Gehen, Sitzen, Liegestütze und vieles mehr.

• Control: Enthält Blöcke, die bei der Entscheidungsfindung helfen. Dies kann ein if-else-Block, ein C-Block
oder ein Programmendblock sein.

Du kannst auch gerne die anderen Kategorien erkunden.

Es gibt einen wichtigen Block. Es ist ein spezieller Block, der nur einmal in einem Programm verwendet wird.

Es heißt Setup & Loop Block. Du findest ihn im Systemkatalog. Dieser Block besteht wie im Namen aus 2
Teilen, Setup und Loop.

• Der Setup-Teil führt die darin enthaltenen Blöcke nur einmal aus. Dies kann verwendet werden, um Start-
melodien abzuspielen. So kannst du dem Benutzer mitteilen, dass der Roboter gestartet ist.

• Der Loop-Teil führt die darin enthaltenen Blöcke wiederholt aus. Die Reihenfolge der Ausführung ist von
oben nach unten.

Wenn du mehrere Setup & Loop Blöcke in deinem Programm hast, dann funktioniert dein Programm nicht wie gewün-
scht.

Jetzt kannst du mit dem Programmieren beginnen. Hier sind ein paar Aufgaben.

9.5 Tasks

9.5.1 Aufgabe 1 - Erste Tests

Teil 1

1. Füge einen Setup & Loop-Block hinzu.

2. Füge in Setup eine Buzzer-Melodie (Der Block heißt: “Buzzer play melody”) hinzu.

3. Klicke auf der linken Seite auf die hochladen (Upload). Warte bis der Upload abgeschlossen ist.

Teil 2

1. Verschiebe nun die Buzzer-Melodie von Setup auf Loop.

2. Klicke auf hochladen (Upload) und warte, bis der Upload abgeschlossen ist.

Was beobachtest du? Was verändert sich wenn man den Melodie-Block von Setup in Loop verschiebt?

Note: Erklärung:

Wenn ein Block im Setup ist, dann läuft er nur einmal zu Beginn eines Programms ab. Wenn ein Block in einer Schleife
(Loop) ist, dann wird er immer und immer wieder ausgeführt (bis der Akku leer ist).

9.5. Tasks 191

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.14: Codecraft Upload.

192 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.15: Codecraft Upload continued.

9.5. Tasks 193

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

9.5.2 Aufgabe 2 - Lassen Sie den Hund laufen

1. Entferne die Buzzer-Melodie, wenn du sie nicht mehr hören möchtest.

2. Füge den Walk-Block aus dem Skill-Katalog innerhalb der Schleife (Loop) hinzu.

3. Füge den Bewegungsblock (Execute the movement) nach dieser Schleife (Loop) aus. Dieser Block ist wichtig,
da mit nur mit ihm eine Bewegung ausgeführt wird.

4. Klicke auf hochladen (Upload) und warte, bis der Upload abgeschlossen ist.

Warning: Bittle sollte jetzt anfangen zu laufen. Seie vorsichtig, da er immer noch mit dem PC verbunden ist.
Entferne den USB-Anschluss, um mit ihm spazieren zu gehen.

Note: Erklärung:

In der obigen Aufgabe hast du den Befehl Walk (Gehen) und dann die Bewegung ausführen (Execute the movement)
verwendet. Der Befehl Walk wird nur zur Vorbereitung für die Aktion gebraucht. Ausgelöst wird die Bewegung mit
dem Bewegung-ausführen-Block (Execute the movement).

9.5.3 Aufgabe 3 - Steuere den Hund mit der Fernbedienung.

1. Füge die Blöcke wie im Bild ein und verbinde sie passend.

2. Klicke auf hochladen (Upload) und warte, bis der Upload abgeschlossen ist.

Zunächst beginnt Bittle zu laufen. Drücke nun die obere linke Taste auf der Fernbedienung.

Was siehst du? Hält der Roboter an?

Note: Erklärung:

In dieser Aufgabe hast du einen if-Block verwendet. Der If-Block ist eine Anweisung mit einer Bedingung, die vorher
abgefragt wird. Wenn eine bestimmte Bedingung erfüllt ist, wird dieser Teil des Codes ausgeführt. Der Code wird
übersprungen, wenn die Bedingung nicht erfüllt ist. Der If-Block ähnelt den Überlegungen aus deinem täglichen
Leben. Zum Beispiel:

194 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.16: Code für die Fernbedienung.

9.5. Tasks 195

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.17: If/Else mit Regen.

Hier hast du den if-Block verwendet, um die Verbindung zwischen Roboter und Fernbedienung zu überprüfen. Wenn
Bittle das Signal empfängt, dann ist die Bedingung des ersten If-Blocks korrekt und die Bedingung des zweiten If-
Blocks wird überprüft. Jetzt wird geprüft, welche Taste gedrückt wurde. Wenn du die von dir programmierte Taste
gedrückt hast, dann ist auch die zweite Bedingung korrekt und die Anweisung des zweiten If-Blocks wird ausgeführt.
Wenn du eine andere zufällige Taste gedrückt hast, dann wird der if-Block übersprungen und der Rest des Codes läuft
weiter.

Wow, du bist schon fertig und hast das Ende der heutigen Reise erreicht.

Schon fertig und noch Zeit?

Es gibt eine versteckte Seite für Sie. Klicke hier für die Zusatzaufgaben.

9.6 Weitere Informationen zu Bittle

Möchtest du mehr über den Roboterhund erfahren? Diese Websites können dir helfen:

Grundlagen / Ich habe gerade erst angefangen:

• https://scratch.mit.edu/

• https://microbit.org/get-started/first-steps/introduction/

Mittelstufe / Ich weiß etwas:

• https://docs.arduino.cc/learn/starting-guide/getting-started-arduino

• https://docs.micropython.org/en/latest/

196 Chapter 9. Der Roboterhund Bittle

https://scratch.mit.edu/
https://microbit.org/get-started/first-steps/introduction/
https://docs.arduino.cc/learn/starting-guide/getting-started-arduino
https://docs.micropython.org/en/latest/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• https://i40.fh-aachen.de/courses/dta/activities/bittle/index.html

Fortgeschritten / Bring it on

• https://www.hackster.io/

• https://www.instructables.com/circuits/

• https://www.tinkercad.com/projects

Scanne diesen QR-Code und erhalte alle Links direkt aufs Handy.

Fig. 9.18: QR Code.

Wenn du Projektvorschläge oder andere Ideen hast, dann schreibe uns gerne eine Mail!

9.7 Additional Tasks

9.7.1 Aufgabe 4 - Programmiere eine Fernbedienung, um die Bewegung des Hun-
des zu steuern.

1. Erstelle einen Code für die Fernsteuerung wie im Bild.

Wenn du also die Vorwärts-Taste drückst, dann muss der Hund vorwärts gehen. Wenn du die Links-Taste drückst,
dann muss Bittle nach links gehen. Am besten verwendest du if-Blöcke ähnlich wie in der vorherigen Aufgabe.
Hinweis: Du musst den if-Block mit „Infrared Receiver started“ nur einmal hinzufügen.

2. 1. Klicke auf hochladen (Upload) und warte, bis der Upload abgeschlossen ist.

Hat alles geklappt? Gute Leistung!

Versuche dich an der nächsten Aufgabe.

9.7. Additional Tasks 197

https://i40.fh-aachen.de/courses/dta/activities/bittle/index.html
https://www.hackster.io/
https://www.instructables.com/circuits/
https://www.tinkercad.com/projects

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 9.19: QR Code.

Fig. 9.20: Fernbedienung.

198 Chapter 9. Der Roboterhund Bittle

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

9.7.2 Aufgabe 5 - Roboterübung

Schaue dir das Video unten an und hilf dem Roboter, einige Übungen zu machen.

https://youtu.be/YGm_7YcTz1U

Wenn der obige Link nicht funktioniert, klicke hier: https://youtu.be/YGm_7YcTz1U

Hint: Du kannst verschiedene fixed poses (Programmblöcke für einzelne Kunststücke) verwenden, damit die Hunde
die Fitnessübungen machen. An dieser Stelle kannst du auch kreativ werden und dir eigene Fitnessübungen für Bittle
überlegen.

9.7.3 Aufgabe 6 - Digitaler Zwilling

Ein digitaler Zwilling (oder “digital twin” in englisch) ist eine digitale Nachbildung (zum Beispiel von einer Maschine).
Dabei werden alle Daten über die Maschine wie die Betriebsanleitung, Sensordaten oder Programme gesammelt und
verwaltet. Die Daten sind nicht nur aus der Anwendung des Bittle. Es können auch Daten aus der Konstruktion sein.
Und sogar die Daten, die beim Recycling eines Bittle generiert werden, können im digitalen Zwilling gespeichert
werden.

Was für ein Zweck hat ein digitaler Zwilling? Überlegt zusammen nach möglichen Vorteilen für ein Unternehmen,
wenn es von einer Maschine einen digitalen Zwilling anfertigt.

Das ist alles, was wir für heute haben.

Kommen wir zum letzten Abschnitt. Klicke hier.

9.7. Additional Tasks 199

https://youtu.be/YGm_7YcTz1U
https://youtu.be/YGm_7YcTz1U

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

200 Chapter 9. Der Roboterhund Bittle

CHAPTER

TEN

ARDUINO BASICS

10.1 Introduction

Arduino is an open-source electronics platform based on easy-to-use hardware and software. Arduino boards are able to
read inputs (e.g. a finger on a button or a Twitter message) and can turn them into an output (e.g. activating a motor, or
publishing something online). You can tell your board what to do by sending a set of instructions to the microcontroller
on the board.

All Arduino boards are completely open-source, empowering users to build them independently and eventually adapt
them to their particular needs. The software, too, is open-source, and it is growing through the contributions of users
worldwide.

Thanks to its simple and accessible user experience, Arduino has been used in thousands of different projects and
applications. The Arduino software is easy-to-use for beginners, yet flexible enough for advanced users. It runs on
Mac, Windows, and Linux. (Source: https://www.arduino.cc/en/Guide/Introduction)

Fig. 10.1: Arduino Uno (Source: https://store.arduino.cc/arduino-uno-rev3)

The following course provides you with basic understandings of microcontrollers using Arduino as application example.
Furthermore, a short introduction in C programming is provided.

201

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

10.2 Embedded Systems

Embedded systems are computer systems in which a processor is embedded in a technical device. The processor
takes over all monitoring, control and operating functions. In general, the processor of an embedded system is a
microcontroller. In contrast to PC processors the memory as well as inputs and outputs are usually integrated in a
single chip. This is a processor with different peripheral interfaces.

Microcontroller can be separated by the number of bits of the internal data bus (4 bit, 8 bit, 16 bit, 32 bit, etc.). This
number describes the length of data which can be processed by the microcontroller. The biggest in 8 bit representable
number is 255, thus a 8 bit microcontroller can only add numbers less or equal 255 in one step. Adding higher numbers
results in a longer calculation time as several commands are necessary.

Embedded systems are not always required to have a user interface. However, they can have I/O interfaces to handle
analog or digital data.

Characteristics:

• Application specific customized hardware and software

• Compact devices which execute one or more specific tasks

• Can work without or with a reduced operating system (depending on complexity)

• Special real-time operating systems available

Systems are optimized for (examples):

• Code-size efficiency

• Optimised program execution

• Reduced system costs

• Reduced energy consumption

10.2.1 Difference between Universal Computers and Embedded Systems:

Universal Computer Embedded System
Optimized for high processing power and graphics
performance

Optimized system solutions where the microcontroller is of-
ten not visible

High compatibility with application software Provides comprehensive functions. Available with sensor
and actuator interfaces

Uses a variety of programs for individual applica-
tions

Is optimized for a specific application

Computers are interchangeable, software is the cap-
ital good

Is often designed as a real-time system

Mostly uses standardised Operating Systems, e.g.
MacOS

202 Chapter 10. Arduino Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

10.2.2 Software Development

In conventional, so called “self-hosted” computers (like your Windows PC), the development system and the target
system are identical. The development system in general has a highly specialized and highly integrated interface that
includes all the tools of software development (e.g. Visual Studio).

In case of embedded systems, the operating system of the target can offer only basic functionalities like for example
loader, debugger or scheduler. Therefore, the host system is different from the target system which makes configuration
and debugging more complicated than for “self-hosted” computers. A cross development is necessary.

In this case, the programming and compiling is done using development tools on the host computer. Furthermore, a
connection to the target system is established using a communication interface (e.g. ISP or Ethernet interfaces).

Fig. 10.2: Cross Development using a host computer and an embedded system

10.3 Programming in C

10.3.1 Variables

A variable is a name given to a storage area that programs can manipulate. Each variable in C has a specific type, which
determines the size and layout of the variable’s memory; the range of values that can be stored within that memory;
and the set of operations that can be applied to the variable.

Standard data types for C programming (typical values):

Integer types:

10.3. Programming in C 203

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Datatype Size Range
signed char 1 Byte -128 . . . 127
unsigned char 1 Byte 0 . . . 255
unsigned short 2 Bytes 0 . . . 65535
signed short 2 Bytes -32768 . . . 32767
unsigned int 4 Bytes 0 . . . 232 − 1
signed int 4 Bytes −231 . . . 231 − 1
unsigned long 8 Bytes 0 . . . 264 − 1
signed long 8 Bytes −263 . . . 263 − 1

Floating point types:

Datatype Size Range Precision
float 4 Bytes 1.2E-38 . . . 3.4E+38 6 decimal places
double 8 Bytes 2.3E-308 . . . 1.7E+308 15 decimal places

Void type:

The void type specifies that no value is available. It is used in three kinds of situations:

• A function with no return value has the return type as void.

• A function with no parameter can accept a void.

• A pointer of type void * represents the address of an object, but not its type.

Variables can be defined like this (examples):

• int i, j, k;

• char x = 'x';

10.3.2 Operators

The C language has different types of operators:

• Arithmetic Operators, see below

• Relational Operators, see below

• Logical Operators, see below

• Bitwise Operators, see below

• Assignment Operators, e.g. =

• Misc Operators, e.g. sizeof

Arithmetic operators

Operator Description Example
+ Adding A + B = 30
- Subtracting A B = -10
* Multiplication A * B = 200
/ Division B / A = 2
% Modulus B % A = 0
++ Increment value by one A++ = 11
-- Decrement value by one A-- = 9

204 Chapter 10. Arduino Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Relational operators

Comparison <, >, <=, >=
Equality ==
Inequality !=

Logical operators

And: &&
Or ||
Not !=

Bitwise operators

Bitwise operators work on bits and perform bit-by-bit operation.

Binary And: &
Binary Or |
Binary XOR ^
Binary Left Shift <<
Binary Right Shift >>

10.3.3 Decision Making

Decision making structures require that the programmer specifies one or more conditions to be evaluated or tested
by the program, along with a statement or statements to be executed if the condition is determined to be true, and
optionally, other statements to be executed if the condition is determined to be false.

• if statement: Consists of a boolean expression followed by one or more statements.

• if. . . else statement: An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.

• switch statement: A switch statement allows a variable to be tested for equality against a list of values.

10.3.4 Loops

Loops are used if a block of code must be executed several times. It is possible to use one or more loops inside any
other loop.

• while loop: Repeats a statement or group of statements while a given condition is true. It tests the condition
before executing the loop body.

• for loop: Executes a sequence of statements multiple times and abbreviates the code that manages the loop
variable.

• do. . .while loop: It is more like a while statement, except that it tests the condition at the end of the loop body.

Loop control statements change execution from its normal sequence.

• break statement: Terminates the loop or switch statement and transfers execution to the statement immediately
following the loop or switch.

• continue statement: Causes the loop to skip the remainder of its body and immediately retest its condition prior
to reiterating.

10.3. Programming in C 205

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• goto statement: Transfers control to the labelled statement.

10.3.5 Functions

A function is a group of statements that together perform a task. Every C program has at least one function, which is
main(), and all the most trivial programs can define additional functions.

The general form of a function definition in C programming language is as follows:

return_type function_name(parameter list)
{ body of the function }``

The return type specifies the data type of the value which is returned by the function, for example int. If no value
is returned, the return type is void. The function name is the actual name of the function. The parameters act like a
placeholder to pass values to the function. The function body contains the statements which define what the function
does.

Example:

/* function returning the max between two numbers */
int max(int num1, int num2)
{

/* local variable declaration */
int result;

if (num1 > num2)
{

result = num1;
}
else
{

result = num2;
}

return result;
}

To use the function, it must be called in the program. Therefore, the required parameters and the function name must
be passed. If the function returns a value it must be stored in a variable.

/* calling a function to get max value */
ret = max(a, b);

Note: Variables inside a function or a block which are called local variables. Variables outside of all functions are
called global variables. Variables in the definition of function parameters are called formal parameters.

206 Chapter 10. Arduino Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

10.3.6 Arrays

Arrays can store a fixed-size sequential collection of elements of the same type.

Declaration: type arrayName [arraySize];; example: double size[3];

Initialization: double size[3] = {10.0, 2.0, 3.4};

In this case, the number of values between braces { } cannot be larger than the number of elements that we declare for
the array between square brackets [].

If the array should just big enough to hold the initialization, an empty square bracket is used: double size[] =
{10.0, 2.0, 3.4, 9.4};

An element is accessed by indexing the array name. This is done by placing the index of the element within square
brackets after the name of the array: timSize = size[2];. This will take the third element from the array and assign
it to the variable “timSize”.

10.3.7 Pointers

A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory location. It is
used for example for dynamic memory allocation.

10.3.8 Strings

Strings are actually one-dimensional array of characters terminated by a null character ‘0’. Thus a null-terminated
string contains the characters that comprise the string followed by a null.

Example: char word[] = "Hello";

10.3.9 Structures

Structures is a user defined data type available in C that allows to combine data items of different kinds. For example
it might be helpful to track different information about a person like name, age and city.

Structures can be defined like this (structure tag is optional):

struct [structure tag]
{

member definition;
member definition;
...
member definition;

}[one or more struct variables];

Example:

struct person
{

char name[50];
int age[25];
char city[100];

};

(continues on next page)

10.3. Programming in C 207

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

(continued from previous page)

/* Initialization */
struct person tim; /* Declare tim of type person */

/* Access member of structure */
timAge = tim.age;

To access any member of a structure, we use the member access operator (.).

10.4 Arduino Programming

An Arduino-Program „Sketch“ consists of the „setup“ function for one time initialization during starting time and the
„loop“ function for the endless loop.

10.4.1 Difference between Arduino and conventional C

The Arduino has a minimal Operating System. The program consists of an initialization part and an endless loop. As
it can be seen in the example below, the Arduino development platform encapsulates many cryptic functions and the
processor code. Additionally, the Arduino code is significantly larger in size than a code written in conventional C.

10.4.2 Arduino vs. Microcontroller Programming

Microcontrollers can be programmed in different languages. A very hardware-related, low-level language is Assembler.
It is used to create code for a specific device/ a particular computer architecture and typically selected for time or
memory critical tasks.

In contrast to Assembler Arduino has a minimal Operating System and library functions to interact with the Hardware.
Thus, it is portable across multiple systems (the generated code can be used for different microcontrollers). Program-
ming of C-Register is done with the help of the library functions. This leaves the programmer free to take care of his
individual program.

208 Chapter 10. Arduino Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

10.4.3 Arduino basic commands

Read and Write:

• To set up the PIN in (INPUT,OUTPUT) mode: pinMode(PIN,OUTPUT);

• To write digital values: digitalWrite(PIN,value);

• To read digital values: value=digitalRead(PIN);

• To write analog values: analogWrite(PIN,value);

• To read analog values: value=analogRead(PIN);

Useful Arduino commands:

• Delay of the program execution in milliseconds: delay(1000);

• Start of serial communication: Serial.begin(9600);

• Send data via serial interface: Serial.println(analogRead(1));

Create own functions (example):

void blink(int thePin, int time)
{

digitalWrite(thePin, HIGH);
delay(time);
digitalWrite(thePin, LOW);
delay(time);

}

// Calling the function
blink(3, 1000);

Switch-case: Used to test if a variable is in a specific condition.

switch (myVariable)
{

case1:
command1;

break;
case2:

command2;
break;
default:

command3;
break;

}

Note: For more information please refer to the Arduino page: https://www.arduino.cc/reference/en/

Note: For most steps Arduino examples are available in the Arduino IDE. Use these examples!

10.4. Arduino Programming 209

https://www.arduino.cc/reference/en/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

10.5 Getting started with Arduino IDE

The Arduino IDE is a really simple programming environment. Arduino projects are called “sketches”. Main features
of Arduino IDE are:

10.5.1 Simple GUI with only a few Menus and Buttons

Fig. 10.3: Arduino GUI Overview

• The first button starts the compilation of your program.

• The second button compiles and downloads the program to the board.

• The next three buttons are New, Open and Save.

• On the right side is the button for the serial monitor.

10.5.2 Managed and unmanaged Libraries

The Arduino project provides a lot of libraries which are version managed. These libraries are available via the Library
Manager in the Sketch menu.

Fig. 10.4: Arduino Library Manager

With the Library Manager you can search for libraries and install them. Also library updates can be installed with this
tool.

Unmanaged, own or third party libraries are supported as well. These can be placed in the user folder.

210 Chapter 10. Arduino Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

..\Documents\Arduino\libraries\

After adding a new library into this folder, a restart of the IDE is necessary.

10.5.3 Serial monitor and Serial plotter

With the serial monitor you have a direct access to the serial port. Via serial port you can exchange information
between the developer and the program running on the board. It is mostly used for debugging software or exchanging
data between a pc program and the Arduino board.

The serial plotter is a really simple tool which is able to plot a received number in a time series diagram. You can plot
multiple values into one waveform, by adding a blank between the values. If you use a tabulator \t as separator the
values are plotted in different waveforms.

10.5.4 Examples

Most Board Support Packages and Libraries will provide example source code that demonstrates how it should be used.
All examples can be found in the File menu. You can often realize quickly and vertically prototypes by combining
some examples.

10.5.5 Arduino Basic functions

Every Arduino program contains two basic functions:

void setup(){
}

void loop(){
}

The setup() function is called once in the beginning of the program start-up. Here you can call initialization and
setup functions, which are needed in your program.

The loop() function will be called over and over again as fast as possible. In this part you will implement every
functionality which will be done during the runtime of the board.

10.6 Problem Solving

This chapter should help you to fix problems which are occurring frequently.

10.6. Problem Solving 211

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

10.6.1 Arduino

You cannot find the Node MCU?

Check if you can find the microcontroller in the Device Manager (press Windows and X) of your Laptop (COM Port).

Option 1: At the Device Manager look for a USB to Serial kind of device that seems to be broken (e.g., showing an
exclamation mark; showing an USB2.0 device without specific name). Double click on it and head over to the Drivers
tab. Click on Update Driver to search for updated driver software. Then, you should see the NodeMCU at your COM
port.

Option 2: If you do not see the microcontroller you may need to install the drivers. You can download them here:
https://github.com/nodemcu/nodemcu-devkit/tree/master/Drivers

Sources: https://medium.com/@cilliemalan/installing-nodemcu-drivers-on-windows-d9bffdbad52

Sources:

• https://learn.sparkfun.com/tutorials/i2c/all

• https://learn.adafruit.com/adafruit-mcp9808-precision-i2c-temperature-sensor-guide/overview

• https://roboindia.com/tutorials/ds18b20_temp_sensor_nodemcu

• https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806

• https://www.instructables.com/id/Calibration-of-DS18B20-Sensor-With-Arduino-UNO/

• https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/

• https://www.arduino-tutorial.de/arduino-und-mqtt/

• https://www.baldengineer.com/mqtt-introduction.html

• https://www.tutorialspoint.com/cprogramming/index.htm

• https://www.arduino-tutorial.de/

212 Chapter 10. Arduino Basics

https://github.com/nodemcu/nodemcu-devkit/tree/master/Drivers
https://learn.sparkfun.com/tutorials/i2c/all
https://learn.adafruit.com/adafruit-mcp9808-precision-i2c-temperature-sensor-guide/overview
https://roboindia.com/tutorials/ds18b20_temp_sensor_nodemcu
https://create.arduino.cc/projecthub/TheGadgetBoy/ds18b20-digital-temperature-sensor-and-arduino-9cc806
https://www.instructables.com/id/Calibration-of-DS18B20-Sensor-With-Arduino-UNO/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.arduino-tutorial.de/arduino-und-mqtt/
https://www.baldengineer.com/mqtt-introduction.html
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.arduino-tutorial.de/

CHAPTER

ELEVEN

TIA PORTAL BASICS

In this module, the TIA Portal environment for PLC-programming is introduced.

11.1 Learning Outcome

• You will get familiar with the TIA Portal environment.

• You will be able to program Siemens PLCs using FBD, LAD, and SCL programming languages.

11.1.1 Introduction

TIA Portal is a Siemens software that provides a programming environment for PLCs. Different programming lan-
guages, like FBD, LAD, and SCL (a variant of ST), are supported in TIA Portal.

This module will go through the basics of starting a new project in TIA Portal.

11.1.2 Requirements

• PLC-Basics

11.1.3 What you need

Software

• TIA Portal V15 or newer

• PLCSIM Advanced V2.0 or newer

11.2 TIA Portal

TIA Portal is a Siemens software for programming PLCs. Also, PLCs can also be simulated using PLCSIM Advanced.

The TIA Portal environment includes a networks window. Networks act like code lines; code (each network) is run by
the CPU from up to down every PLC cycle (i.e., network 1, then network 2, and so on). Programming in networks is
useful for good code organization, especially if the programming language used is LAD or FBD.

213

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 11.1: Part of the TIA Portal environment - a new project

11.2.1 Programming Blocks

The design of PLC codes in TIA Portal is done with modular blocks. There are divided into 4 types according to their
use.

These are:

• Organizational block: These provide structure to program. They serve as a link between the user program
and the OS of PLC. Main [OB1] is a type of this block.

• Function block: This type of block is used to create code snippets which has its own data storage i.e., it
has its own variable memory where the values are stored after the code snippet finishes its intended task.

• Function code: This type of block is generally used to create a reusable code structure. This block does
not have a database linked to it i.e., it does not save values it calculates. Thus, a local stack of temporary
values is used and gets deleted once the code snippet is exited (after executing its intended task).

• Data block: This is used to store data received from the code snippets. The data block can be either global
DB or can be an instance DB.

11.2.2 Creating a new function block

A new project will only have a block called Main [OB1]. This is the project’s main function. All user created functions
and function blocks will be called inside the main function.

The block Main [OB1] in TIA Portal can be written using either LAD or FBD standard programming languages. In
the context of this module, LAD will be used.

Note: The programming language of Main [OB1] can be changed through right click on Main [OB1] -> Switch
programming language.

To create a block, click on Add new block under Program blocks.

214 Chapter 11. TIA Portal Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 11.2: Types of Programming blocks

Note: Blocks are useful for organizing and structuring a program.

The following figure shows a new function block that is named State_machine.

Variables can be declared and used inside the function block.

To run this FC, you will have to include it inside the Main [OB1] block.

To do so, drag and drop the function block into a Main [OB1] network to create instance of the function block.
Once you drag it on the rail of Main, a pop-up to create a DB would appear. Click OK to create the DB. This data
block stores all the instance variables related to that instance of the FC.

Note: All types of Functions have to be called in Main [OB1] to execute them. If they are not in Main [OB1],
they won’t run or do their task.

A data block is not created to save variables of function code / functions. No instances of function code
/ functions exist.

Function blocks, however, are initiated as instances. Variables that belong to a specific instance of a function
block are saved in a data block that specifically stores variables of that instance only. Creating another instance of
the same function block type will create another data block for the new instance. Hence DB instance for LED_1
will be different from LED_2 and will operate separately.

Note: Functions with inputs have to have inputs connected to them in Main [OB1]. If no inputs are connected to
the function, a compilation error will occur.

11.2. TIA Portal 215

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 11.3: Creating a new block

216 Chapter 11. TIA Portal Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 11.4: TIA Portal function block environment

11.2. TIA Portal 217

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 11.5: Example Function Block

Function blocks, on the other hand, do not require inputs to be connected to them in Main [OB1]. Each instance
of a function block has its own Data block, in which the inputs of that specific instance is saved.

11.2.3 Using Predefined Functions

TIA Portal provides various predefined functions ready for use. These can be found on the right side under Basic
instructions.

For example, if you need a Mathematics based function, expand Math functions and select the required function.

Note: User-defined functions and function blocks are used in the same way in LAD.

218 Chapter 11. TIA Portal Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 11.6: A function block instance in Main

Fig. 11.7: An example of a standard function.

11.2. TIA Portal 219

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

11.2.4 Watch and Force Tables

Watch and force tables are tables that are used to monitor variables in real-time while the PLC is running. Watch and
force tables can also be used to overwrite variables in real-time. Because they can change variables’ values, they are
useful for testing a program. In this module, watch tables will be used to monitor and set variables while the program
is running.

Deep Dive: Watch vs Force Tables

Force tables manipulate the peripherals. In this module, watch tables will be used to monitor and test the program.
Watch tables are recommended for testing the program. For big programs, every scenario of inputs and outputs could
be summed up in a watch table.

Fig. 11.8: The stage at which watch and force tables manipulate the signals

220 Chapter 11. TIA Portal Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Creating Watch Tables

To create a new watch table, select Add new watch table under Watch and force tables in the Project tree.

Add the variables you need in the rows.

Set the PLC in Online mode (using Online -> Go online) and in RUN mode (Online -> Start CPU)

Once done, select the Monitoring tool from the menu above. Now you can watch the changes in the variables and also
modify their values if required.

Hint: Watch tables are on PC hence you do not have to download the code again to the PLC.

Fig. 11.9: An example set-up of a watch table

Note: All the variables shown in this watch table are part of a created data block called IMS_4_DB, hence the
"IMS_4_DB". at the beginning of the variables’ names. The address column is empty because these variables in this
example were not mapped to a PLC I/O module, but are rather variables that belong to an instance of a user-defined
function block called IMS_4.

Fig. 11.10: An example watch table in action

Danger: Using a watch or a force table to manipulate variables influence the real system and overrides the program
on the PLC. Be sure that it is safe to do so when working with a real PLC as it may be connected to moving parts
or could unintentionally release liquids through valves.

11.2. TIA Portal 221

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

11.2.5 Timers

There are various types of timers available according to IEC standard. Here are the commonly used timers with their
timing diagram.

Fig. 11.11: Timers (ref: Siemens S7-1200 Programmable controller System Manual)

11.2.6 Monitoring runtime values

You can monitor runtime values using Monitor Tool. It looks like the image below. You will find it at various locations.

222 Chapter 11. TIA Portal Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 11.12: Monitor Tool

11.2. TIA Portal 223

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

224 Chapter 11. TIA Portal Basics

CHAPTER

TWELVE

TIA OPC-UA

12.1 Configuring OPC-UA server in TIA Portal

To activate an OPC UA server:

• Go to Device configuration from Project tree from left side.

• Set the view to Device view

• Click on the PLC image and open Properties

• Go to OPC UA -> Server -> General

• Under Accessibility of the server, check the option Activate OPC UA server to activate it.

• In case a security pop-up appears, accept it (click OK).

• Find Runtime licenses in the same window (Properties)

• Under Type of purchased license, select SIMATIC OPC UA S7. . .

• Go back to OPC UA -> Server -> General

• Copy the server address.

Note: Write down (and copy it) the complete server address of the PLC. Please DO NOT forget opc.tcp and port
number!

This information will be needed later when a client (for example UA Expert, Prosys OPC UA Browser or Siemens NX
MCD) tries to communicate to the PLC over OPC UA.

Note: The OPC-UA server will not work if license is not set properly.

Warning: FOR THIS MODULE, PLEASE DO NOT CHANGE ANY MORE SETTINGS.

Danger: Be careful in setting security for the OPC-UA server when working on REAL PROJECTS.

Here, you are not working on hazardous equipment, hence No Security option under Properties -> OPC UA ->
Server -> Security is enabled. Learn more in user manual before changing these settings.

225

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 12.1: Activating OPC UA server

226 Chapter 12. TIA OPC-UA

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

12.2 Creating OPC-UA Server Interface

To add a server interface, perform the following steps:

1. Select the PLC name from the Project tree.

2. Expand the and select OPC UA communication

3. Select Server interfaces and expand it

4. Click on Add new server interface and rename the interface created

5. From the Add new server interface pop-up, select Server interface and click OK

6. Add the tags required to be monitored or to be modified using OPC Client. You will have to drag the tags
from OPC UA elements to server interface

7. Upload the changes to the PLC

Fig. 12.2: OPC-UA Server Interface

Note: Keep the PLC connected with LAN cable.

• When uploading any hardware changes, keep the PLC in STOP mode and in offline mode. i.e., Online -> Stop
CPU & Online -> Go offline

• When uploading only software changes, you can keep PLC in Online mode.

Danger: Be cautious in setting access of variable. You should not provide open access to all variables (tags).

Set the access in Default Tag Table

12.2. Creating OPC-UA Server Interface 227

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 12.3: Default Tag Table

228 Chapter 12. TIA OPC-UA

CHAPTER

THIRTEEN

PLCSIM ADVANCED

13.1 Setting up simulation support in TIA Portal

Before starting a PLC simulation, one should first make sure the TIA Portal program allows simulations. To do that,
right click on Project's name in the Project tree``and select ``Properties. In the Protection tab, a
tick has to be placed next to Support simulation during block compilation.

Fig. 13.1: Adding support for simulation in TIA Portal

Warning: PLCSIM does not offer simulated PLCs with communication features. If communication features, such
as OPC-UA are required, simulations must be carried out using PLCSIM Advanced.

13.2 Launching PLCSIM Advanced and creating a PLC instance

Now PLCSIM can be launched. For that, double click on the PLCSIM Advanced icon on the desktop or search for
PLCSIM Advanced in the search bar and click Enter.

Note: PLCSIM Advanced does not launch a window (in older PLCSIM Advanced versions). When it runs, it shows
up on the tray icon. A right click on the tray icon will show the control panel.

Note: The PLC name and IP address have to be identical to those in the TIA Portal program. Use a subnet mask of
255.255.255.0. Please note that the subnet mask depends on the network settings.

After Start is clicked, a virtual PLC instance should run.

229

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 13.2: Setting up a PLC instance

230 Chapter 13. PLCSIM Advanced

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 13.3: A running virtual PLC instance

13.2. Launching PLCSIM Advanced and creating a PLC instance 231

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

13.2.1 Deep Dive: PLCSIM vs PLCSIM Advanced

With TIA Portal, it is possible to simulate a Siemens PLC and test a program on the simulated PLC. With the software
PLCSIM, it is possible to create such a simulation (12xx and 15xx PLCs), however, the simulated PLC has no com-
munication capabilities. The software PLCSIM Advanced (a separate software than PLCSIM) can simulate Siemens
15xx PLCs with communication capabilities.

13.2.2 Summary

Simulating a PLC using PLCSIM Advanced allows for communication. The simulated PLC can communicate with
other devices (through OPC-UA for example), allowing for a more realistic validation of control code.

232 Chapter 13. PLCSIM Advanced

CHAPTER

FOURTEEN

OPC-UA CLIENT

14.1 Prosys OPC-UA Browser

There are a lot of different OPC tools available. In this project the free to use tool Prosys OPC UA Browser from Prosys
OPC Ltd is selected.

Warning: Prosys OPC-UA Browser requires the IP-address and port of the opc-ua server.

Start the tool and select the field Enter connection address. Fill in the address and port to the OPC-UA Server
(i.e. the IP Address of the PLC and the default Port 4840). Next, click on the arrow and open the connection to the
OPC-UA server.

Hint: A PLC might need to be in running mode for the OPC-UA server to be enabled.

Now you can browse through your OPC-UA Objects and search for the variables your OPC-UA server exposes. It is
also possible to subscribe to data changes of variables.

233

https://downloads.prosysopc.com/opc-ua-browser-downloads.php
https://www.prosysopc.com/products/opc-ua-browser/
https://www.prosysopc.com/products/opc-ua-browser/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

234 Chapter 14. OPC-UA client

CHAPTER

FIFTEEN

PLC-BASICS

Programmable Logic Controllers (PLC) are computers which are commonly used in commercial and industrial control
applications. Generally speaking, PLCs monitor inputs and other variable values, make decisions based on a stored
program and control outputs to automate a process or machine.

A PLC typically consists of input and output modules, a Central Processing Unit (CPU) and a programming device.
The primary function of the input unit is to convert the signals at the inputs into logic signals which can be used by the
CPU. The CPU analyzes the status of inputs, outputs and other variables and executes the stored program. After that,
the CPU changes the output signals.

Fig. 15.1: Example for PLC wiring for industrial applications

Advantages in contrast to hard-wired control:

• Easy to modify input and output devices

• High flexibility due to modular design

• Significant reduction of cabling

• Solid-state, no moving parts

235

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Smaller physical size

• Integrated diagnostics and override functions

• Easy and cost-effective duplication possible

• Communication capabilities

15.1 Information processing

Information at the inputs of the PLC are processed in cycles. First, the CPU queries the input channels and stores the
data in the working memory. This storage area is called “input image” as the stored input data does not show the current
state of the inputs but the available data at the time of sampling.

Next, the program is executed step by step and the variables are stored in the memory. Finally, the calculated output
parameters are stored in the “output image” and transferred to the output channels to control the connected machine.

Fig. 15.2: Cyclic information processing of PLCs

Types of input and output signals:

• Binary inputs: Input module can distinguish between a high and a low level of the input signal (typical value:
0V and 24V).

• Binary outputs: Output modules generate TRUE (5V) or FALSE (0V) values which are typically intensified
(24V) using transistors or relays.

• Analog inputs: A physical measurand is transformed into a voltage or current signal using a transducer. The
resulting signal is transferred to the analog inputs of the PLC.

236 Chapter 15. PLC-Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Analog outputs: A voltage or current signal is generated to control actuators.

15.2 PLC Programming (IEC 61131)

PLC programming is standardized in the IEC 61131.

15.2.1 Controller configuration and resources

Creating a controller configuration, the hardware structure is specified in the programming environment. All resources
which are controlled by the PLC software (input, output modules, interface cards, etc.) are declared. Nowadays, this
is usually done automatically by scanning the connected components or by drag-and- dropping the parts.

Input channels are declared using %I and outputs specified writing %Q. The following letter defines the data type of the
signal (bit X, byte B, word W, doubleword D). In this context, the declaration %IX1.2 calls the second channel of the
first binary input card.

La-
belling
of in-
put and
output
ad-
dress-
ing

1.
Let-
ter

2. Letter
Exam-
ple

AT% I Input x Bit AT%IX1.2
Q Out-
put

B Byte, 8 Bit AT%QB0

W Word, 16 Bit AT%QW7
D Doubleword, 32 Bit AT%QD5

15.2.2 Tasks

Tasks organize the time schedule of programs. It works a bit like a cyclic step counter, which selects the instructions of
the program in a clock-controlled way. Based on that, the CPU processes the instruction which is stored in the selected
storage area.

Several programs can be assigned to one task running all in the same cycle time. The following process is conducted
(IPO principle; input-processing-output):

• Read input data of all programs.

• Processing of all programs.

• Output of the output data of all programs.

The cycle time of all programs assigned to one task is identical as the output data of all programs is transferred simul-
taneously at the end of the processing cycle.

One CPU can process multiple tasks with different cycle times (multitasking). Therefore, the computing power is
distributed between the different tasks using interrupt signals for changing.

15.2. PLC Programming (IEC 61131) 237

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

15.2.3 Program Organization Units (POUs)

An object of the type POU is a Program Organization Unit in a CODESYS project. You write source code for the
controller program in POUs. There are the following types of POUs:

• Programs

• Function Codes FC

• Function Blocks FB

Fig. 15.3: Difference between Function Codes and Function Blocks

Function Codes can have several input variables but only one output variable. This variable is the return value of the
Function Code. Function codes have no internal memory, thus they cannot store intermediate values. Function Codes
can be separated between standard and user-specific functions. Standard functions like for example AND, ADD or
BYTE_TO_WORD can be used directly during programming without declaring it separately.

Function Blocks can also be standardized or user-specific. Examples for pre-defined FBs are triggers, counters and
timers. FBs can store intermediate values for the next IPO cycle and can have several outputs Q. The output signals are
created by connecting the inputs I and the states Z.

15.2.4 Variables

Variables are used to establish a communication between different program organization units. Different kinds of
variables are available:

• VAR: Local variables which are only valid in the associated POU.

• VAR_GLOBAL: Global variables are valid in all POUs. They are used for communication between different pro-
grams.

• VAR_INPUT: Input variables which are used to write inputs in FCs or FBs.

• VAR_OUTPUT: Output variables of FCs or FBs.

• VAR_IN_OUT: Input and output variables can be changed in the FB and then be released.

• VAR_RETAIN: Variables retain the value when the PLC is put off and on again.

• VAR_PERSISTENT: Variables retain the value if the software is loaded on the PLC.

Standard data types:

238 Chapter 15. PLC-Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Datatype Size Range Example
Bit sequence BOOL 1 Bit FALSE / TRUE FALSE

BYTE 8 Bit 16#00 . . . 16#FF 16#00
WORD 16 Bit 16#0000 . . . 16#FFFF 16#0000
DWORD 32 Bit 16#00000000 . . . 16#FFFFFFFF 16#00000000

Whole numbers SINT 8 Bit -128 . . . 127 0
INT 16 Bit -32768 . . . 32767 0
DINT 32 Bit -2147483648 . . . 2147483647 0

Whole numbers without sign USINT 8 Bit 0 . . . 255 0
UINT 16 Bit 0 . . . 65535 0
UDINT 32 Bit 0 . . . 4294967295 0

Floating point figure REAL 32 Bit -3.4 * 10^38 . . . 3.4 * 10^38 0
Time TIME
Time of day TIME_OF_DAY
Date DATE
Character sequence STRING

A typical variable declaration consists of five parts:

<variable name> AT<address> :<data type> :=<initial value>; (* comment *)

example: buttonStart AT%IX0.0 :BOOL :=FALSE; (*Start Button*)

Note: It is helpful to use speaking names instead of numbers to make it easy to understand the program (e.g. button-
Light and buttonVentilator instead of button1 and button2).

Derived data types:

Standard data types can be modified to fulfil special needs: TYPE Name : ... END_TYPE

Four different kinds can be distinguished:

• Enumeration: TYPE A_STATUS : (START,RUN,WAIT,STOP); END_TYPE

• Area: TYPE A_DATA : UNIT(0..16#3FF); END_TYPE

• Field: TYPE A_4IN : ARRAY[1..4] OF A_DATA; END_TYPE

• Structure: TYPE str_Motor : STRUCT ... END_STRUCT; END_TYPE

Enumerations are typically used if different options are possible and if easy readable code should be produced.

15.3 Programming languages (IEC 61131)

Programmable Logic Controller (PLC) programming as other programming tasks has defined set of rules described
in the IEC 61131-3. In this Standard, information about programming concepts and industry accepted programming
languages is provided. For this module, SCL, LAD and FBD are selected as they are most commonly used.

15.3. Programming languages (IEC 61131) 239

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 15.4: Five programming languages of the IEC 61131-3 standard (source: https://www.motioncontroltips.com/
iec-61131-3-plcopen/)

Fig. 15.5: SCL, LAD & FBD (ref: Siemens S7-1200 Programmable controller System Manual)

240 Chapter 15. PLC-Basics

https://www.motioncontroltips.com/iec-61131-3-plcopen/
https://www.motioncontroltips.com/iec-61131-3-plcopen/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

15.3.1 Structured Control Language (SCL)

SCL (Structured Control Language) is a high-level text-based programming language. It is based on PASCAL.

Fig. 15.6: An example of a SCL code 1.

Various important syntax for SCL are provided below:

Assignments: A := 10; (The variable A is assigned the value 10.)

Statements: blink : BOOL; (Create a variable blink and assign the type BOOL.)

Mathematical functions: +, -, *, /

Addressing of global variables (tags): “<tag name>” (Tag name or data block name enclosed in double quotes)

Addressing of local variables: #<variable name> (Variable name preceded by “#” symbol)

Comments
Single line comment: // comment

Multi line comment and comments after end of ST line: <statement>; (* comment *)

15.3. Programming languages (IEC 61131) 241

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 15.7: An example of a SCL code 2.

242 Chapter 15. PLC-Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Operators: Standard operators in ST ordered after precedence:

Operation Symbol Precedence
Parentheses (expr) Highest
Function Evaluation MAX(A,B)
Negation Complement NOT
Exponentiation **
Multiply *
Divide /
Modulo MOD
Add +
Subtract -
Comparison <,>,<=,>=
Equality / Inequality = / <>
Boolean AND & AND
Boolean Exclusive OR XOR
Boolean OR OR Lowest

Note: A = B and A := B are NOT SAME!

= (equality operator) evaluates if the left and the right side is equal. If value of A is equal to value B. It returns TRUE if
yes, else it returns FALSE.

:= denotes a statement. It is used for assigning value of right side to the left side. In this case, the value of B is assigned
to A.

Combining operators:

IF (Input1) AND (Input2) OR (Input3) THEN
Output1 := True;

END_IF

IF Statements: If statements are used for boolean queries.

IF [boolean expression] THEN
<statement>;

ELSIF [boolean expression] THEN
<statement>;

ELSE
<statement>;

ENDIF;

CASE Statements: Case statements are one of the most important structuring methods to generate readable code.
Case statements are typically used to program state machines.

TYPE
Steps:(INIT:=0, START, RUN, END);

END _TYPE

VAR
state: Steps; (*use of enumeration*)

END_VAR
(continues on next page)

15.3. Programming languages (IEC 61131) 243

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

(continued from previous page)

CASE state OF
INIT: Instruction_A;
START: Instruction_B;
RUN: Instruction_C;
END: Instruction_D;

END_CASE

FOR Loops: It is used to repeat code a specific number of times.

FOR count := initial_value TO final_value BY increment DO
<statement>;

END_FOR;

WHILE Loops: It is used to repeat the loop as long as some conditions are TRUE. A WHILE loop will repeat as long
as a boolean expression evaluates to TRUE.

WHILE [boolean_expression] DO
<statement>;

END_WHILE;

REPEAT Loops: It works the opposite way of the WHILE loop. This loop will stop repeating when a boolean
expression is TRUE.

REPEAT
<statement>;

UNTIL [boolean_expression]
END_REPEAT;

15.3.2 Ladder Diagram (LAD)

Ladder diagrams are specialized schematics commonly used to document industrial control logic systems.

In terms of TIA Portal program for Siemens PLCs, SCL plays an important role in programming of functions codes
and function blocks. The Main [OB1] block is preferred to be programmed using the Ladder Diagrams.

A program written in LAD consists of networks. The language is based on relay logic. The flow of the logic ‘true’
across a network is similar to the flow of electricity across a relay logic. One can think of the left rail as being positive,
and the right rail as being negative. The logic ‘true’ flows from the left rail to the right rail.

Fig. 15.8: An example of a network in LAD.

244 Chapter 15. PLC-Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Various logical operations can be thus programmed in LAD. The following figure shows AND & OR logic after starting
the PLC or simulated PLC.

Fig. 15.9: An example of logical operations in LAD.

A general list of Bit Logic instructions used in LAD are mentioned below

Operation Symbol
Normally Open Contact (Address) ---| |---
Normally Closed Contact (Address) ---| / |---
Save RLO into BR Memory ---(SAVE)
Bit Exclusive OR XOR
Output Coil ---()
Midline Output ---(#)---
Invert Power Flow ---|NOT|---
Insert branch
Merge branch

15.3.3 Function Block Diagram (FBD)

FBD is another graphical programming language. It uses Boolean algebra-based blocks to develop codes. A function
block is depicted as a rectangular block. The inputs are on the left and outputs on the right side. It can have standard
functions, such as logic gates, mathematical operations, counters, or user defined functions.

15.3. Programming languages (IEC 61131) 245

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 15.10: An example of a network in LAD. (ref: SIEMENS TIA Portal STEP 7 Basic V10.5)

246 Chapter 15. PLC-Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 15.11: Common FBD blocks (ref: SIEMENS Function Block Diagram (FBD) Reference Manual)

15.3. Programming languages (IEC 61131) 247

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

15.3.4 Additional languages

The Instruction List (IL) is very similar to the programming language Assembler and typically used to limit the com-
puting time. In the example, the operand A is loaded in the working memory in the first line. Next, an AND operation
with the negated operand B is conducted. Finally, the result is stored in the variable C. However, IL gets very long
and confusing if complex tasks are programmed. As computing time usually does not play an important role today,
high-level languages like Pascal, C or Structured Text (ST) are used typically.

The Sequential Function Chart (SFC) can only be used to program sequential control tasks in the form of step chains.

15.3.5 Examples

SCL

A complete example (programming of a traffic light) is shown below. First, an enumeration including all process states
is defined. Next, all necessary variables are declared (a variable called state is defined using the new created data
type stateType). Finally, the program sequence is established using a CASE OF statement.

TYPE stateType :
(RED:=1,REDYELLOW,GREEN,YELLOW);

END_TYPE

VAR
state:stateType;
button:BOOL;
lred,lyellow,lgreen:BOOL;
atime:TON;

END_VAR

CASE state OF
stateType.RED:

IF NOT lred THEN
lred:=TRUE;

END_IF
IF button THEN

state:=stateType.REDYELLOW;
END_IF

stateType.REDYELLOW:
IF NOT lyellow THEN

lyellow:=TRUE;
atime(IN:=TRUE,PT:=#5s);

END_IF
IF atime.Q THEN

state:=stateType.GREEN;
END_IF

stateType.GREEN:
IF NOT lgreen THEN

lgreen:=TRUE;
atime(IN:=TRUE,PT:=#40s);

END_IF
IF atime.Q THEN

state:=stateType.YELLOW;
(continues on next page)

248 Chapter 15. PLC-Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

(continued from previous page)

END_IF
stateType.YELLOW:

IF NOT lyellow THEN
lyellow:=TRUE;
atime(IN:=TRUE,PT:=#5s);

END_IF
IF atime.Q THEN

state:=stateType.GREEN;
END_IF

END_CASE

15.4 Sources

• https://www.plcacademy.com/structured-text-tutorial/

• Book Speicherprogrammierbare Steuerungen für die Fabrik- und Prozessautomation, Matthias Seitz, 2012*

15.4. Sources 249

https://www.plcacademy.com/structured-text-tutorial/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

250 Chapter 15. PLC-Basics

CHAPTER

SIXTEEN

SIEMENS NX MCD

In this module, Siemens NX MCD is introduced and the most common functions that are used in constructing kinematic
models are presented.

16.1 Learning Outcome

• You will get familiar with virtual commissioning.

• You will get to know the basics of Siemens NX MCD.

• You will understand and be able to create physics-based models.

16.2 Virtual Commissioning

Virtual commissioning is the process of testing and debugging control code on virtual models, possibly before the
machine/ components materialize. It allows for early validation of code and decreases real commissioning time.

Fig. 16.1: Influence of control software debugging on project time with (figure below) and without (figure above)
virtual commissioning

251

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.2: Typical steps of virtual commissioning

Virtual commissioning can start during the development stages of the product/ asset. At stages where the material
objects are not yet available, virtual commissioning allows for early detection of bugs in the PLC code and design flaws
in the asset.

16.3 Mechatronics Concept Designer

16.3.1 Siemens NX General Actions

NX is an advanced CAD/CAM/CAE software. The following are some common actions used when working with a
CAD assembly in NX.

Table 16.1: General NX Commands
Action How to do it
Zoom in/out Mouse wheel
Move the view left/right/up/down Click and hold both the mouse wheel + the right mouse

button and move the mouse
Rotate the view Click and hold the mouse wheel and move the mouse
Move/Rotate an object relative to other objects/global
coordinate system

Assemblies tab > Move Component > Select Compo-
nents > Specify Orientation with arrows

252 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

16.3.2 Modelling with MCD

Mechatronics Concept Designer is an application inside Siemens NX that allows the creation of physics-based models
and simulations based on CAD files. The goal of the following sections is to guide you through the basics of creating a
physics-based model and influencing it from outside the simulation using external signals. To navigate to MCD, open a
part or an assembly in Siemens NX. In the Application tab, click on more and choose Mechatronics Concept Designer.

Rigid Bodies

Solids (i.e., CAD models with no assigned physical properties in MCD) are only there to visualize the assembly and do
not move during the simulation. Once a part gets assigned as a rigid body, it starts participating in the simulation. As a
rigid body, the part is changed from just a CAD model to a part with physical characteristics. Rigid bodies have weight,
center of mass and inertia. These parameters influence the dynamics of the body in the simulation. It is recommended
to assign a material to the solid body, so that a realistic weight can be calculated.

Rigid bodies react to the acceleration due to gravity, which can be defined along any axis in MCD. Usually, acceleration
due to gravity is defined in the negative z or y directions. The direction of gravitational acceleration can be changed in
File -> Preferences -> Mechatronics Concept Designer -> General -> Acceleration due to Gravity.

Collision Bodies

Rigid bodies without collision bodies do not collide when they come in contact. Collision is only possible when both
objects have collision bodies. Without collision bodies, objects will go right through each other. An object with a
collision body, however, will collide with another object that also has a collision body.

Collision is a property which is independent of whether the part is a rigid body or not i.e., a collision object that has
no assigned rigid body status will still collide with other objects that have a collision body.

The collision shape of a collision body can be defined in many ways. It is best to choose simple shapes (box, cylinder,
etc.) as a collision shape.

Collision mesh

16.3. Mechatronics Concept Designer 253

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.3: Assigning a rigid body to a part. One rigid body can consist of multiple parts connected to each other that
will always undergo the same motion together.

254 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

The option “mesh” offers the highest complexity. It allows for a more realistic simulation of the real object, but requires
a high simulation performance. The Convex Factor sets the resolution of the mesh. The higher the factor, the more
detailed the collision mesh. Collision shapes that consist of more than 300 triangles will automatically set a Siemens
NX warning pointing to potential performance losses.

Fig. 16.4: Different ways to set a collision body; the pink area is the active collision area that will collide with other
collision objects.

A decision must be made whether an added complexity to the collision shape serves the purpose of the simulation.

Category

The category is a number that can be assigned to a collision body to specify collision possibilities with other collision
bodies. Collision bodies only collide within the same categories and with collision bodies in the category 0. Category
0 is an exception; bodies in the category 0 collide with all other collision bodies, regardless of the object’s category.
Categories can be used to simulate inductive sensors.

Collision material

The choice of collision material influences the physical coefficients dynamic friction, static friction, rolling friction,
and restitution. It is recommended to enter accurate friction values for all parts that will take part in collisions to reflect
reality.

In order to create a custom material in NX MCD: Go to the Physics Navigator, right click on Materials and select
Create Physics -> Collision Material.

Prevent collision

The prevent collision function allows two collision objects to not collide with one another if they come in contact.

Transport surface

Transport surfaces are used to simulate conveyor belts. Siemens NX MCD provides a function that can define any
surface in an assembly as a transport surface.

16.3. Mechatronics Concept Designer 255

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.5: Assigning a collision body

256 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.6: Creating a collision material

Fig. 16.7: Assigning transport area properties to a surface

16.3. Mechatronics Concept Designer 257

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Collision Sensors

One of the sensor functions available in Siemens NX MCD is a function that turns objects into collision sensors. When
such an object collides with another object (the second object must have collision properties), a boolean signal is set to
true. Collision sensors are used to simulate different types of real life sensors (e.g., optical sensors, inductive sensors,
etc.). Collision sensors are usually helping elements and are not displayed (blinded out) during the final simulation.

Fig. 16.8: A collision sensor used to simulate the function of an inductive sensor in the assembly. The sensor detects
if a part is at the beginning of the conveyor belt.

Joints

Rigid bodies can be fixed, positioned in space or connected to each other by joints of different degrees of freedom.
These connections are independent of the assembly constraints from the design application. The joints are available in
different degrees of freedom: Hinge (swivel joint f=1), sliding joint (f=1), and cylindrical joint (combined sliding joint
and hinge (f=2)).

The following figure shows a sliding joint that is assigned to a rigid body. The rigid body has only one degree of
freedom and can be moved only along the axis specified for the sliding joint. Moreover, upper and lower limits are
defined along the specified axis which the body cannot exceed during motion.

The following figure shows a hinge joint assigned to a part within an assembly. For a hinge joint (and a sliding joint),
an attachment object and a base object should be provided. A base object can be ignored if the base of rotation (or
sliding) is not movable in the simulation. In case the base is movable, it must be specified.

Position Controls

The positions of the joints created earlier can be controlled with objects called Position Controls, which can be
found in the Electrical tab. The following figure shows the creation of a position control object to control a sliding
joint object.

Position controls can also be created to control the angle of a hinge joint. Position control objects have two important
variables: position and speed. Both variables can be manipulated during the simulation using operations and external
signals.

258 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.9: Assigning a sliding joint to an object

16.3. Mechatronics Concept Designer 259

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.10: Assigning a hinge joint to an object within an assembly

260 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.11: Creating a position control to control the position of an object along its sliding joint

16.3. Mechatronics Concept Designer 261

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Signals

Signals are objects that allow the communication to programs outside of the simulation. A signal in MCD can have the
type bool, int, or double. A signal can be an input signal or an output signal, allowing a two-way communication from
and out of MCD.

Note: When communicating with a PLC, an output signal from the PLC’s perspective (for example, an motor_on
signal) is an input signal from MCD’s perspective and should be defined in MCD as an input signal.

Signals can be linked to runtime parameters, in case of a collision sensor for example, where the collision sensor’s
value (true/false) is the runtime parameter. Signals can also trigger action in the simulation, e.g. setting a motor to
turn on. When interacting with a PLC, an MCD signal should be created for each PLC input and output variable. In
order to allow auto mapping procedures and prevent confusion, the names of the signals both in the PLC program and
in MCD should be identical.

The following figure shows an input signal (input into MCD, output from PLC) that is meant to control the cylinder’s
position.

Symbol Tables are tables that show related signals together. They are a way to not lose track of signals.

16.3.3 OPC UA and Signal Mapping

To establish a communication over OPC UA, click on External Signal Configuration from the Automation
tab. The following figure shows the configuration of an OPC-UA communication. Two boolean variables are selected
which are relevant to the given simulation.

Note: To be able to communicate to a simulated PLC over OPC UA, make sure that OPC UA is configured in the
PLC. (See section on TIA Portal basics)

Now that the external signals are imported, it is time to map them to the signals that were created inside MCD. The
following figure shows auto mapping of 3 inputs and 2 outputs (from MCD’s viewpoint).

16.3.4 Operations

Operations are one way to allow external or internal signals to manipulate the simulation in real time.

The following figure shows an operation that influences the value of the position variable of a position control object.
The shown operation extends a cylinder. The condition object is an MCD signal that is mapped to an external signal.
Thus, this cylinder can be controlled from outside the simulation while the simulation is running.

16.3.5 A Note on Assembly Hierarchy

The following figure shows a robotic arm in an assembly. The robotic arm itself (UR3_step) is an assembly that is
made of single parts. The robotic arm is part of a bigger assembly (called assembly1). In this example, assembly1
is the main assembly (the biggest assembly) and the robotic arm is a sub-assembly inside that main assembly.

Assemblies can thus include single parts or other sub-assemblies.

By double clicking on a part/assembly, MCD focuses on that selected part/assembly. Simulations only run with the
selected part/assembly. To run a simulation including all parts, the main assembly has to be selected. To run a simulation
for only one part/assembly, that part/assembly has to be selected.

262 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.12: A boolean input signal

16.3. Mechatronics Concept Designer 263

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.13: External signal configuration

264 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.14: Signal mapping

16.3. Mechatronics Concept Designer 265

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.15: An example of an operation to influence a position control during simulation in real time

266 Chapter 16. Siemens NX MCD

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 16.16: Assemble levels

16.3. Mechatronics Concept Designer 267

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

The location of a single part in the hierarchy can be changed through drag and drop between the assemblies.

The creation of physical properties (rigid bodies, collision bodies, joints, signals etc.) in Mechatronics Concept De-
signer can be done on any assembly level. Copying parts between files will retain the physical properties created on
the copied level and on all lower levels copied along, but not the properties that were created on higher levels.

When a model is copied, the physical properties of all lower levels are copied along.

• Assigning properties on the individual part’s level is handy if the part is going to be reused in many other assem-
blies. This way, the part can retain it’s physical properties. This saves the work of reassigning physical properties
to the part each time it is copied into a new assembly.

• Assigning the properties on a higher level in the assembly is handy if the part will be used in other assemblies
but its properties are not needed anymore. This saves the work of manually deleting all the assigned properties
when copying the part into a new assembly.

Because of a bug that causes a communication problem, it is recommended to assign physical properties to parts in a
sub-assembly level or on the main assembly level. It is advised to avoid running the simulation on a single part level.
Refer to the section on Troubleshooting for more details on communication bugs.

16.4 Summary

Siemens NX MCD offers a tool to create kinematic models using existing CAD models. These kinematic models can be
controlled by PLCs (simulated/real), which allows for early verification of control code and a cut in real commissioning
time.

268 Chapter 16. Siemens NX MCD

CHAPTER

SEVENTEEN

NODE RED BASICS

Fig. 17.1: Node-RED UI

Node-RED is a software tool developed by IBM for wiring together hardware devices, APIs and online services as part
of the Internet of Things.

17.1 Learning Outcome

17.1.1 Introduction

• You will be able to use node-RED as a middleware to create a dashboard for your devices.

269

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

17.1.2 Requirements

• Basic programming skills

17.1.3 What you need

Hardware

• PC or Laptop

• Arduino UNO with USB Cable

Software

• Node-RED

• Browser (Chrome / Firefox)

17.2 General information

Node-RED is a programming tool for wiring together hardware devices, APIs and online services in new and interesting
ways. It provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes in the
palette that can be deployed to its runtime in a single-click. (ref: Node-RED)

270 Chapter 17. Node Red Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

17.2.1 Start/Stop Commands

To start Node-RED use the following command in Command Prompt (CMD):

node-red

To stop Node-RED use the following keyboard combination in same CMD window:

Ctrl-C

Once you start Node-RED, you can then access the Node-RED UI using the IP address. It is usually http://localhost:
1880 or http://{[}IP_ADDRESS_OF_PC{]}:1880

(REMEMBER TO REPLACE [IP_ADDRESS_OF_PC] WITH YOUR PCS IP! To find, use ipconfig)

17.2.2 About

Node-RED includes the follow concepts (ref: Node-RED) :

• Node: Basic building block of a flow. You use these to form the flow of your code.

• Configuration Node: Used to store and initialize configuration information. For example providing IP
address of PC if you want to receive data via LAN or WiFi.

• Palette: Contains the available nodes which can be used to create the flow.

• Flow: Nodes interconnected to form a logical data path. It has input, processing functions and output. The
flow tab on the top bar shows workspace which can have multiple flow diagrams.

• Message: Data which gets passed inside a flow.

• Context: Way to store information which can be shared between nodes without using messages that pass
through a flow.

• Subflow: Creating an abstraction layer for a set of nodes. It helps to group certain nodes and represent
them by a single node.

• Wire: Connector between nodes.

• Workspace: Area where you drag drop nodes and make flows

• Sidebar: (on right side) Provides tools and settings to manage and debug the nodes and the messages
related to them.

All available nodes are listed on the left side of the window. Each node accepts and/or emits a message. By dragging
a node into the flow (middle), it is added to the message processing. ‘

On the right side the info, debug und dashboard tab can be found. Info displays information about nodes and their
documentation and debug shows debug messages.

The red Deploy button starts the execution of the flow and applies changes.

Note: When you deploy your flow, it automatically gets saved. You do not need to find a save button. When you open
Node-RED next time, your flows will load automatically.

Todo: Please refer the following link for complete information: (https://nodered.org/docs/user-guide/)

17.2. General information 271

http://localhost:1880
http://localhost:1880
http://{[}IP_ADDRESS_OF_PC{]}:1880
https://nodered.org/docs/user-guide/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 17.2: Node-RED UI

Hint: Node-RED is based on Javascript. You need not know in-dept about Javascript but can have basic idea from
here: (https://www.w3schools.com/js/default.asp)

17.2.3 Help

You can access help function inside Node-RED. To do so, click on the book icon () from the sidebar. Then click on
the node you want the information about.

To use this, click on the node -> then click on Book Icon.

17.3 Nodes

To add a node, simply drag them from the panel on the left. There are few core nodes which act as building
blocks. These are:

• Inject: Pushes fixed data into a flow. You can set repeat interval in its node settings. Supports different
types of message types like string, number and timestamp (Source Node)

• Debug: Receives all types of messages and displays them in Debug sidebar. Used to analyze messages and
find issues. (Sink Node)

• Function: To manipulate the message using Javascript as programming language.

• Change: To modify message properties as per requirement.

• Switch: Switch Statement as in programming terms. Switch message to different output as per given
condition.

• Template: Creates a text string which fills a specified blank. Example, The temperature today is {{pay-
load}} degrees.

272 Chapter 17. Node Red Basics

https://www.w3schools.com/js/default.asp

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

To configure a node, double click on it. A panel will open usually on right side.

Hint: Quick-Add dialog provides an easy way to add a node to the workspace by holding the Ctrl or Command key
when clicking on the workspace.

17.4 Flows

After adding multiple node, connect the output of nodes start nodes to the input of end nodes. This is how you can
create a flow.

Hint: You can comment / disable a flow by selecting all the nodes in that flow and then open Action List. You can do
this by following key combination CTRL + SHIFT + P. If this doesn’t work, change the keyboard shortcuts for Show
Action List from menu (top right corner).

17.5 Messages

Messages in Node-RED usually have a payload property. This payload consists of the required data. All the messages
are in a Javascript Object format. A _msgid is added automatically as identifier. This means that the message will be
in such format:

{
"_msgid": "12345",
"payload": "..."
}

To access the useful information of the message, i.e., the payload, you will use the dot(.) command. For example,

msg.payload

If you have other properties in your message, you can access them as well using the same concept of dot(.) command.

Messages support all the Javascript accepted datatypes. Few of them are mentioned below:

• Boolean - true, false

• Number - eg 0, 123.4

• String - “hello”

• Array - [1,2,3,4]

• Object - { “a”: 1, “b”: 2}

• Null

17.4. Flows 273

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 17.3: Message structure debug (ref: Node-RED)

274 Chapter 17. Node Red Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

17.6 Information and Debug

17.6.1 Information

The Information sidebar shows information about the flows. This includes an outline view of all flows and nodes, as
well as details of the current selection.

17.6.2 Debug

The data from the debug node gets printed inside the Debug sidebar. This can be found on the sidebar with icon or a
bug.

By default it is selected to all nodes but you can set to required nodes if you have multiple debug nodes in your flow.

Hint: You can disable the debug node but clicking on the box on the node. You need not deploy after enabling /
disabling only debug node.

17.7 Palette Manager

It is used to install new palettes to your interface. This is like the library manager of Arduino environment.

To access this, click on from top right corner. Then click on Manage Palette.

To install a new palette, click on Install and find for the required palette. Once found, click on Install button next to
that palette.

Hint: Before installing a new palette, it is always good to export all the flows.

To do so, click on from top right corner, then Export. Click on all flows and then Download. Save the file to your PC
as backup file.

17.8 Functions

Function node allows writing custom codes using Javascript language. The message is passed inside the function as
on object called msg. You can access all the properties in the message object using dot(.) command. For example,
msg.payload

All the functions have already a return msg; statement. This send the message out of the function. You can also
pass null if your function return nothing, i.e., void function. It is important to always return a msg object. DO NOT
RETURN STRINGS OR NUMBERS.

// WRONG IMPLEMENTATION

var newMsg = msg.payload.length; // sends integer value out of function as length is␣
→˓number
return newMsg;

17.6. Information and Debug 275

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 17.4: Information (ref: Node-RED)

276 Chapter 17. Node Red Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 17.5: Debug (ref: Node-RED)

17.8. Functions 277

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

// CORRECT IMPLEMENTATION

var newMsg = { payload: msg.payload.length }; // sending length as a property
return newMsg;

More information about functions can be found here (https://nodered.org/docs/user-guide/writing-functions)

17.9 Tasks

The tasks below are designed to teach Node-RED UI and its basics

17.9.1 Task 1

Task 1.1

Todo: Create a flow with an inject node and debug node.

Follow the steps below:

1. Add the nodes on workspace and join them.

2. Deploy the flow.

3. Open Debug window from sidebar.

4. Click on the square button on inject node and observe the output on debug window. You must see some
numbers in debug. Check the help to find what these numbers mean.

Task 1.2

Todo: Inject automatically after 2 second. See the complete message in Debug.

Follow the steps below:

1. Open the node configuration of inject and set it to repeat every 2 seconds.

2. Open the node configuration of debug and set it to display complete message.

3. Deploy the changes and observe the Debug window. You must see the complete message between { }
brackets.

278 Chapter 17. Node Red Basics

https://nodered.org/docs/user-guide/writing-functions

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Task 1.3

Todo: Use function to add property to a message.

Follow the steps below:

1. Add a function node in between the inject node and debug node.

2. Add the following code to the function. This function adds a property called name to the message and then
returns it out from the function.

msg.name = "[YOUR NAME]";
return msg;

3. Deploy the changes and observe the Debug window. You must see your name on the debug window.

17.9.2 Task 2

Note:

You would need the following palettes installed.

• node-red-dashboard (https://flows.nodered.org/node/node-red-dashboard)

• node-red-node-random (https://flows.nodered.org/node/node-red-node-random)

Todo: Use random function to publish values between 15 to 35. It must repeat every 5 seconds. Add a function to
convert these values from celsius in fahrenheit. Name the function Temp Converter. Use the output of this function
to display values on a chart.

The label of chart must be room temperature. Set the value of x-axis to last 10 minutes.

Note: To open dashboard, look for a bar chart icon on side panel. Click on it and then find an icon as in image below.

Fig. 17.6: Dashboard Icon

Hint: You will need to add an inject node before the random function generator to repeat values at specified interval.

17.9. Tasks 279

https://flows.nodered.org/node/node-red-dashboard
https://flows.nodered.org/node/node-red-node-random

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

17.9.3 Task 3

Todo: Create a HTTP endpoint which responds to GET requests and handles the parameters passed in the url.

http://example.com/hello-query?PARAMETER_1=VALUE_1

Fig. 17.7: Task flow structure

Tips for First Flow are provided below:

1. In template node from function section. Enter the following code in the editor.

<html>
<head></head>
<body>

<h1>Hello {{req.query.name}}!</h1>
</body>

</html>

Tips for Second Flow are provided below:

1. In http request node. In URL, enter the following and keep the rest setting unchanged.

http://localhost:1880/hello-query?name={{{payload}}}

or this if the above doesn’t work

http://127.0.0.1:1880/hello-query?name={{{payload}}}

The output must look like this: Remember to See the blue highlighted text below. You output must be as in blue
color.

280 Chapter 17. Node Red Basics

http://example.com/hello-query?PARAMETER_1=VALUE_1

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 17.8: Task output

17.9. Tasks 281

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

17.9.4 Task 4

Todo: Create a user input form on dashboard. The form should take the following inputs from user: Name, Email-ID
and Favorite number.

Use this form to save data to a .txt file.

Use the Node-RED help book icon ().

282 Chapter 17. Node Red Basics

CHAPTER

EIGHTEEN

VISUAL STUDIO CODE BASICS

Fig. 18.1: VS Code by Microsoft

Visual Studio Code is a source code editor. It supports various programming languages and can be combined with
compilers to work as a package integrated development environment IDE.

18.1 Learning Outcome

18.1.1 Introduction

• You will be able to use Visual Studio Code for code developed and version control.

18.1.2 Requirements

• Basic programming skills

18.1.3 What you need

Hardware

• PC or Laptop

Software

• Git Software

• Visual Studio Code

• Browser (Chrome / Firefox)

283

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

References

1. VS Code https://code.visualstudio.com/

2. GitLab https://git.fh-aachen.de/

3. GitLab Extension for VS Code https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow

18.2 General information

Visual Studio Code is a source code editor. It supports various programming languages and can be combined with
compilers to work as a package integrated development environment IDE.

VS Code has IntelliSense which allows word based completions. This you can write code syntax without typos.

You also get access to various extensions. These enhance the working of VS Code and also adds new features as per
requirements.

Fig. 18.2: VS Code by Microsoft

18.2.1 Interface

The UI is divided into five areas (ref: VS Code):

• Editor - The main area to edit your files. You can open as many editors as you like side by side vertically and
horizontally.

• Activity Bar - Located on the far left-hand side, this lets you switch between views and gives you additional
context-specific indicators, like the number of outgoing changes when Git is enabled.

• Side Bar - Contains different views like the Explorer to assist you while working on your project.

• Editor Groups - You can open multiple files and can split the screen to work with two or more files simultaneously.

• Panels - You can display different panels below the editor region for output or debug information, errors and
warnings, or an integrated terminal. Panel can also be moved to the right for more vertical space.

• Status Bar - Information about the opened project and the files you edit.

Activity Bar: This includes the followings commands to manage open project: Explorer, Search, Source Control, Run
& Debug and Extensions. You can switch between these to handle the project as per requirements.

Side Bar: In this area, you can create, delete and modify files of your project. You can also drag & drop files to organize
content.

Note: When creating new files, PLEASE add an extension to the file. If no extension is provided, the file also
has no extension!

Status Bar: It is divided in mainly two parts.

284 Chapter 18. Visual Studio Code Basics

https://code.visualstudio.com/
https://git.fh-aachen.de/
https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 18.3: VS Code UI (ref: VS Code)

18.2. General information 285

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• The left part consists of Project related stuff. Here you see master which is the working branch of the
project. When you change the branch, it automatically sets it to default upload branch. The refresh icon
synchronizes the content between server and local stored code. The icons near that shows information about
the tips and errors in all opened files of the project.

• The right part of the status bar shows properties related to the editor and user selected settings which apply
to editor window.

Panels: The panels include Problems, Output, Debug console and Terminal. These can be opened from top Menu bar
under View.

Note: The garbage can icon is used to kill the current Terminal session. If you kill the last terminal session, the
Terminal tab will close automatically.

18.2.2 Command Palette

VS Code allows direct execution of commands for extensions. This can be done using Command Palette. Command
Palette can be accessed from View -> Command Palette or using key combination CTRL + Shift + P.

To execute a command for an extension, always check for angle bracket symbol (>). Following the symbol, you can
type the name of the extension and then you will see the different options / commands available.

Fig. 18.4: VS Code Command Palette (ref: VS Code)

286 Chapter 18. Visual Studio Code Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

18.2.3 Saving Settings

When you modify settings, you will usually see 2 options, User Settings & Workspace Settings.

In user settings, the settings are saved for the user of the editor. These settings will be default for all projects opened
afterwards.

In workspace settings, the settings are saved for only that specific instance of project. A new file gets created in the
same project folder which can be shared with others so that everyone has the same settings while working on the project.
For example, using tabs instead of spaces for indentation of code.

18.3 Gitlab Extension

Warning: Before starting, please confirm you have access to GitLab server of University. You can check that by
logging on the following website using your fh-kennung nummer (AB1234S) and passwort: https://git.fh-aachen.
de/

Todo:

Please install the following softwares:

• Git Version Control (https://git-scm.com/downloads)

Follow the steps below to setup GitLab Account with VS Code.

From the Top Right corner, click on your profile image then Preferences. You will be redirected to new page.

Fig. 18.5: Step 1

18.3. Gitlab Extension 287

https://git.fh-aachen.de/
https://git.fh-aachen.de/
https://git-scm.com/downloads

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

On this page, select Access Token from the left menu. On the new page, enter a name for token, for example: vs-
code_laptop. You can leave the Expiration date empty. select all checkboxes under Select scopes. Once done, click
Create personal access token.

Fig. 18.6: Step 2

When done, you will receive a Personal Access Token. Copy and save that for future use.

Inside VS Code, install the extension for GitLab (https://marketplace.visualstudio.com/items?itemName=GitLab.
gitlab-workflow). Head to the extension and click on Add Account.

On top, you will see a bar requesting for a URL. Use https://git.fh-aachen.de/. Then it will ask for access token. Enter
the token created from GitLab.

When successful, you will see a confirmation on bottom right corner. If not already done, Open terminal inside VS
Code from Terminal -> New Terminal.

For windows users -> Enter git config --global core.editor “notepad” in it.

Enter git config --global --edit in it. A file will open in text editor. In name, enter your full name and in email, enter
your fh-email id example firstname.lastname@alumni.fh-aachen.de

Now you can create / clone new repositories.

288 Chapter 18. Visual Studio Code Basics

https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow
https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow
mailto:firstname.lastname@alumni.fh-aachen.de

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 18.7: Step 3

18.3. Gitlab Extension 289

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 18.8: Step 4

290 Chapter 18. Visual Studio Code Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 18.9: Step 5

18.3. Gitlab Extension 291

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Warning: When cloning a repository, please use https:// URL. The git@git is used when setup done
using SSH.

After your repository is setup successfully, you can find these options in Source Control option from left menu in VS
Code.

18.4 Arduino Extension

Todo: Download and install the Arduino IDE to program your Arduino Uno.

Download Link: https://downloads.arduino.cc/arduino-1.8.19-windows.zip

Version: 1.8.X

Note: The Arduino extension for VS Code will automatically detect installed Arduino IDE. If in case it doesn’t happen,
follow the steps below:

• Open Extensions from Activity Bar. Search Arduino extension.

• Click on small gear (manage menu) next to it. It will open a new menu.

• Click on Extension Settings. New tab will open.

• Scroll down and find Arduino Path

• Enter the complete installation address of your Arduino IDE. C:Program Files...

To use the extension, follow the steps below:

• Open VS Code. Click on Open Folder from the startup interface. Open the folder Documents -> Arduino.
If the folder is not found inside Documents, create a new one named Arduino. Open the Arduino folder.

• Inside Arduino folder, click on New Folder from top bar and name the folder. PLEASE DO NOT IN-
CLUDE SPACES IN NAME. USE UNDERSCORES (_). Example, my_first_code

• Open the new created folder. Once inside the new create folder and click on Select Folder from bottom.

• VS Code will open with the selected folder.

• Open Command Palette -> Arduino Initialize. A pop-up will ask for file name.

• Enter the file name. PREFER USING SAME NAME AS FOLDER NAME. Press enter once done.

• Select the required board. Enter UNO AVR board from the selection list.

• Once done, you will find a project file with extension .ino and a folder .vscode in your Side Bar.

The following commands have to be used after initial setup:

• Board Config: To change the development board.

• Select Serial Port: To change the serial port of connected device.

• Verify: To compile the code and check for syntax errors. This only compiles the code, does not upload it.

• Upload: To build the code and upload it to connected board.

292 Chapter 18. Visual Studio Code Basics

mailto:git@git
https://downloads.arduino.cc/arduino-1.8.19-windows.zip

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 18.10: Step 6

18.4. Arduino Extension 293

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 18.11: Step 7

294 Chapter 18. Visual Studio Code Basics

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• Library Manager: Allows management and download of external libraries.

• Open Serial Monitor: To open serial monitor to see device logs and user based serial print statements.

Details about rest commands can be found here (https://github.com/microsoft/vscode-arduino#commands)

18.4. Arduino Extension 295

https://github.com/microsoft/vscode-arduino#commands

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

296 Chapter 18. Visual Studio Code Basics

CHAPTER

NINETEEN

INTRODUCTION TO VERSION CONTROL WITH GIT

Fig. 19.1: GIT SCM

19.1 Learning Outcome

19.1.1 Introduction

• You will be able to use concepts of Git to manage your coding projects.

19.1.2 Requirements

• Basic programming skills

19.1.3 What you need

Hardware

• PC or Laptop

Software

• Git Software

• Visual Studio Code

• Browser (Chrome / Firefox)

297

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

References

1. VS Code https://code.visualstudio.com/

2. GitLab https://git.fh-aachen.de/

3. GitLab Extension for VS Code https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow

4. Git https://git-scm.com/

5. Professional Git by Brent Laster (available online in University Library)

6. Git Book V2 https://git-scm.com/book/en/v2

7. EBC-Tutorials https://github.com/RWTH-EBC/EBC-Tutorials/tree/master/EBC-Git-101

8. Semantic Versioning 2.0.0 https://semver.org/

9. Semantic Versioning Wikipedia https://de.wikipedia.org/wiki/Version_(Software)

19.2 Introduction

Download Link: https://git-scm.com/downloads

A version control is a kind of system which allows you to keep track of the changes that have been made to a code over
a duration of time. This means that you can, at any given point in time, revert back to the older versions of the code
you are working on.

Git is a popular VC software. Git works on Distributed Version Control Systems. This system provides everyone the
copy of all files and allows user to edit them locally. The user can then work on the files locally and then upload the
files to the server. The advantage of DVCS is that, if a server crashes, a local user can upload the files and make it
running as they have a complete copy of the server data.

Git stores the content in form of trees and blobs. A blob (or Binary Large Object) is a object type used to store file
content. It doesn’t store metadata like date of creation of file. A commuted checksum SHA-1 is used to represent the
file. A tree holds the listing of other trees and blobs. A commit takes the snapshot of the tree at that specific moment and
saves it. When you create another commit, a new snapshot is taken with only the required changes in the new commit.
The old / unchanged file remain the same and the new commit points to the old files. Thus the storage required is only
for changed files.

19.3 Workflow

In a git, you have Working Directory, Staging Area (index), .git Directory (local repository), Upstream Directory
(remote repository), and Stash.

Elementary Git workflow (You already have a git initialized repository):

• You modify a file in your Working Directory

• You mark the edited files are confirmed changes and stage them. This saves only the changes as a snapshot.
The original file is stored as a reference.

• You commit those files. This takes the staged files and stores the snapshot of changes permanently in your
git repository.

• You Push your changes from local repository to remote repository

Small Teams

When you are working in a small team say 2 members, then your workflow will be like in image below.

298 Chapter 19. Introduction to Version Control with Git

https://code.visualstudio.com/
https://git.fh-aachen.de/
https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow
https://git-scm.com/
https://git-scm.com/book/en/v2
https://github.com/RWTH-EBC/EBC-Tutorials/tree/master/EBC-Git-101
https://semver.org/
https://de.wikipedia.org/wiki/Version_(Software
https://git-scm.com/downloads

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.2: Distributed Version Control System. (ref: Git Book V2)

19.3. Workflow 299

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.3: GIT objects (ref: Git Book V2)

Fig. 19.4: Git States (ref: Git Book V2)

300 Chapter 19. Introduction to Version Control with Git

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

The typical activities done are:

1. Creation of a new repository either online or local on PC.

2. Clone repository if created online. Push repository to server if created offline.

3. Create required branch (say feature)

4. Code and Test it.

5. Commit the code.

6. Repeat steps 4 and 5 till a certain part of feature is ready.

7. Push to remote repository.

8. Repeat steps 4 to 7 till the feature is completed.

9. Merge the feature branch into main branch.

Contributing to online projects

When you are contributing to online repositories, the following activities are typically performed (ref: Git
Book V2):

1. Fork the project to your account.

2. Create a topic branch from master.

3. Make some commits to improve the project.

4. Push the codes to your account’s project.

5. Open a Pull Request on platform (say GitLab).

6. Discuss with the project’s team, and optionally continue committing.

7. The project owner merges or closes the Pull Request.

8. Sync the updated master back to your forked project.

19.4 Commits

When you make a commit, Git stores a commit object that contains a pointer to the snapshot of the content you staged.
This object also contains the authors name and email address, the message that you typed, and pointers to the commit
or commits that directly came before this commit (its parent or parents): zero parents for the initial commit, one parent
for a normal commit and multiple parents for a commit that results from a merge of two or more branches. (ref: Git
Book V2)

There is no certain rule for commits but is suggested to be like ONE commit per ONE task / bug.

The commit messages are important as they provide info about what you edited in that specific commit. Thus when
you review your changes history, you can recollect what you did by reading the message or when a 3rd person is going
through your work can make a sensible understanding of your changes if they plan to work on your repository. The
suggested length of text is of 50 characters. You provide to the point info in this.

Ex, if you change a function in a code:

• Fixing file in code // Not good

• Fix function ### // Good

• Fix function ### in file ### // Better

19.4. Commits 301

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.5: Git workflow small team (ref: Git Book V2)

302 Chapter 19. Introduction to Version Control with Git

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Hint: The files which are not required to be tracked can be ignored during commit using .gitignore file (found usually
at root directory). Usual untracked files may include build files or temporary files. To untrack a file simply add the
relative location of the file / folder to the .gitignore file.

Hint: If you forgot some files in the last commit or want to update your commit message, you can add the files to the
staged area and the use amend command. You must do this before you push to remote repository.

19.5 Git Branches

It is used to create a separate directory of your code and then work on that copy. This allows you to create a copy from
your main working branch with all the history of changes in it. You can then work on the new branch so as to fix a bug
or implement a new feature. Once done, you can merge the branch to your main branch.

This helps in avoiding to edit files on a working environment. Ex, you have a blink LED program which starts automat-
ically when the board boots up. You need to implement a button trigger to start this blink. So, you create a new branch
from your main, and then implement and test your code. When everything works, you combine the changes from new
branch to main branch.

You can also work on multiple branches simultaneously and can fix a bug while you are working on a new feature. Just
be sure when merging your new features, you en-corporate the bugs fixed on the main branch during the development
of the new branch.

19.6 Merging and Merge conflicts

To incorporate the new branch into the main branch, you use merge command. This copies the required code from the
source branch to the target branch. The source branch can then be deleted if required.

In a situation if two people A & B are working on same project. A updates README.md file and pushed the changes.
B also adds content to README.md and pushes the changes. But B gets a conflict error as B did not pull the A’s
updated version of README.md rather just pushed the changes.

To avoid such conflicts:

• Always PULL before PUSH.

• Do not have more that one developer working on a specific file.

• Try merging main branch frequently to your feature branch to keep new changes updated in your feature
branch.

19.7 Tags

To mark a specific milestone for the project, tags are used. Tags are initially saved on local repository and have to be
pushed to remote.

There are two types of tags (ref: Git Book V2):

• Lightweight: It points to a specific commit.

• Annotated: It stores the data as full object in git database. It contains tagger name, email and date.

19.5. Git Branches 303

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.6: Git conflicts demo.

304 Chapter 19. Introduction to Version Control with Git

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

The tag type depends on what information you want to save. If its a temporary tag, Lightweight is better option.

Hint: You can use semantic versioning for creating tags. Can find more information here: (https://semver.org/)

Fig. 19.7: Semantic Versioning (ref: Semantic Versioning Wikipedia)

19.8 Rebase

This allows to move commits and its history to another branch. This means that you are changing the base of your
branch and making it appear as if it was created from a different commit. The main use of rebasing is to have a linear
commit history.

The difference between a merge and rebase is that, in merge, if the branch moves forward with a commit, merge will
create an empty commit. Hence it will be stored in your history.

In rebase, git finds a common commit and saves the differences after that. Then in sequential order applies the changes.

Hint:

19.8. Rebase 305

https://semver.org/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.8: Repository with difference in branches

Fig. 19.9: Merge command

Fig. 19.10: Process of rebase

306 Chapter 19. Introduction to Version Control with Git

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.11: Final repository history after rebase

For more information about this, visit

• https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase

• https://www.atlassian.com/git/tutorials/merging-vs-rebasing

• Git Book V2

19.9 Git Interface

Git is officially available as a command line tool, but is also available in different environments. You can download git
command line tool from (https://git-scm.com/downloads). There are various GUI tools and extensions for popular
IDE / Code Editors available.

Initially you need to provide some details about you when you first install git. To do so, open a new terminal / cmd.

For windows users -> Enter git config --global core.editor “notepad” in it.

Enter git config --global --edit in it. A file will open in text editor. Enter your name and email in that after colon (:).

19.10 Git Commands

A basic list of commands used in git is provided below. For additional commands, please refer the (https://training.
github.com/)

Clone new repository:

• git clone -b <BRANCH_NAME> <REPOSITORY_URL_WITH_HTTPS>: To download repository
to your PC as local repository.

Basic Workflow:

• git status: This provides you the current status of your repository. Ex, info about files modified, last commit
info, branch info etc.

• git add PATH_TO_FILE or git add . : It adds the files to staging area. The dot (.) adds all changed files
inside your working directory to your staging area.

• git commit -m “commit message”: It moves the files from staging area to local repository. The -m is a
required flag. It is used to provide a sensible commit message to name the changes you did. Ex. Fix blink
function in blink.cpp

19.9. Git Interface 307

https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/downloads
https://training.github.com/
https://training.github.com/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

• git push: Publishes the changes from local repository to remote repository.

Make new branch from main:

• git checkout main: To set main branch as default work branch.

• git pull: To download changes from main branch.

• git branch NEW_BRANCH: Create new branch

• git checkout NEW_BRANCH: Select NEW_BRANCH as default work branch

• git push --set-upstream origin NEW_BRANCH: To set NEW_BRANCH as default when uploading to
remote repository.

Tags:

• git tag: List current tags.

• git tag -a [Name_for_Tag] [Commit_Hash_ID]: Add a tag with specific name for a specific commit.

• git push –tags: To push tags to remote.

• git push –follow-tags: Push only annotated tags to remote.

• git show [TAG_Name]: Display details of tag.

• git tag -d [Name_for_Tag]: TO delete a specific tag. To remove it from remote repository, use git push
origin :[Name_for_Tag]

Amend:

• git commit –amend: Adds the files to our last commit.

Log:

• git log: To see the complete history of git commits.

• q / z: to exit the log.

19.11 Tasks

The tasks below are designed to teach Version Control with VS Code and GitLab.

Hint: You can follow these tasks directly with git commands in CMD/Terminal.

19.11.1 Task 1

Todo: Creating a new repository on GitLab website.

Follow the steps below:

1. Open GitLab website (https://git.fh-aachen.de/)`and login in. You will see a page with all the projects in your
account.

2. Click on New project button to create a new project. ON next page, click on Create blank project.

3. On the next page, enter the name of your project.

308 Chapter 19. Introduction to Version Control with Git

https://git.fh-aachen.de/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

4. In project URL select your FH-Kennung nummer (FH identifier) (AB1234S). In Project slug enter the name
of the project. Please no spaces (),or dots (.).

5. For Visibility level, select Private.

6. Select Initialize repository with a README and click on Create project

Fig. 19.12: Create new project on GitLab website.

19.11. Tasks 309

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

19.11.2 Task 2

Todo: Managing project in VS Code.

Follow the steps below:

1. Have a ready setup of VS Code with connected GitLab account.

2. From the Get Started page on VS Code, click on Clone Git Repository. You can also clone a repository using
Command Palette -> Git Clone.

3. Click Clone from GitLab -> Select the created repository from the list. Then select the link with https.

4. Select a folder to save the files on your PC. Prefer saving them in Documents folder. Then click Select Repository
Location.

5. Once cloned, VS Code will ask you to whether to open the recent cloned repository in this window or a new
window. Select Open.

19.11.3 Task 3

Todo: Managing branch and publishing branch.

Follow the steps below:

1. Create a new branch by click on bottom left option. (Initially you will see Main written)

2. Select Create new branch. Enter the name of the new branch as “develop”.

3. Add a new folder in the project by clicking on New Folder from Explorer on the left side. Name the folder as
Blink

4. Create a New File inside the folder Blink.ino. ! Extension is important

5. Paste the following code in the file.

// the setup function runs once when you press reset or power the board
void setup() {
// initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage␣
→˓level)
delay(1000); // wait for a second

}

6. Click on Source Control from left panel. Enter a commit message “initial commit”.

7. Click on “Commit” button. Next, click on Publish Branch.

310 Chapter 19. Introduction to Version Control with Git

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.13: VS Code Branches & File management

Hint: You can stage the required files for commit by using the plus(+) sign next to the files. When the commit button
is pressed, only the staged files are committed.

The files which are not required can be added to git ignore by right clicking on the required file.

19.11. Tasks 311

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

19.11.4 Task 4

Todo: Updating files online using GitLab website.

Follow the steps below:

1. Open your project online on (https://git.fh-aachen.de/)

2. Switch the branch of the project to “develop”.

3. Locate the file “Blink.ino”.

4. Click on Open in web IDE.

5. Add the following lines in the code between ” delay(1000); ” and ” } “

digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the␣
→˓voltage LOW
delay(1000); // wait for a second

6. Once done, click on Create commit from the left side.

7. Enter a commit message “update LED blink”. De-select Start a new merge request.

8. Click on Commit button.

Note: When you update code online, this means that the code on your PC is old. To get the latest version of code, you
must PULL the changes. This is done in next task.

312 Chapter 19. Introduction to Version Control with Git

https://git.fh-aachen.de/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

For more information, Please read Workflow section of tutorial.

19.11.5 Task 5

Todo: Pulling and Pushing files from VS Code.

Follow the steps below:

1. In VS Code, go to Source Control.

2. Click on Source Control menu (. . .) icon. In that, click on Pull. This will download the changes made from
GitLab server.

3. Open the file “Blink.ino”.

4. Replace the delay time from 1000 to 2000 for both delay functions.

5. Save the file, and go to Source Control.

6. Enter a commit message, “Updated Blink duration”.

7. Click on Source Control menu (. . .) icon. In that, click on Push. This will upload the changes to GitLab
server.

19.11.6 Task 6

Todo: Merging “develop” to “main” branch.

Follow the steps below:

1. Open your project online on (https://git.fh-aachen.de/)

2. From left side menu, click on Merge requests. On the new page, click on New merge request.

3. On the next page, select the source branch, “develop” and in target branch select “main” branch.

4. Next click on Compare branches and continue. Enter the title for the merge request.

5. In Description, provide brief information of the content of new feature / part completed with this branch.

6. Change rest of the options as per requirement.

7. Once all things are ready, click on Create merge request.

8. After this, another page would show up. This will show the details about the merge request. If everything
is correct, it would show Ready to merge!.

9. Click on Merge to combine the code the main branch. After this, the changes will be moved to the main
brnach.

10. Open the repository’s main page. Confirm whether the code is merged properly or not.

19.11. Tasks 313

https://git.fh-aachen.de/

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

Fig. 19.14: VS Code Source control menu

Fig. 19.15: GitLab merge branch page

314 Chapter 19. Introduction to Version Control with Git

DTA - FH Aachen, Copyright 2023, Prof. Jörg Wollert (FH Aachen)

19.11.7 Task 7

Todo: Create a annotated tag for this version of code.

Follow the steps below:

1. 1. In VS Code, go to Source Control.

2. Click on Source Control menu (. . .) icon. In that, click on Tags. Click on Create Tag.

3. Enter the required information such as Tag name and annotation message.

4. Click on View -> Command Palette.

5. Enter Git: Push Tags.

19.11.8 References

• GitLab Manage projects https://docs.gitlab.com/ee/user/project/working_with_projects.html

The Interreg V-A Euregio Meuse-Rhine (EMR) programme invests almost EUR 100 million in the development of the
Interreg-region until 2020. This area stretches out from Leuven in the west to the borders of Cologne in the east, and
runs from Eindhoven in the north all the way down to the border of Luxemburg. Over 5.5 million people live in this
cross-border region, where the best of three countries merges into a truly European culture. With the investment of
EU funds in Interreg projects, the European Union directly invests in the economic development, innovation, territorial
development and social inclusion and education of this region.

This course is part of the digital twin academy: https://digital-twin-academy.eu/

19.11. Tasks 315

https://docs.gitlab.com/ee/user/project/working_with_projects.html
https://digital-twin-academy.eu/

	Preamble
	Digital Twin of a machine plant
	Siemens NX MCD: Simple Robotic Arm Modelling
	What you need
	Software
	Files

	Preparation
	Assignment
	Box and Conveyor Band
	Simple Robotic Arm
	Collision Sensor
	Conditions - Using Operations as if-Statements

	Virtual Commissioning of a Production Line
	Learning Outcome
	Introduction
	Requirements
	What you need
	Software
	Files

	Task
	Preparation: Station IMS3
	Goal
	Task
	Siemens NX MCD
	PLC Program

	Station IMS3: Practical Assignment
	Goal
	IMS3 Station Functionality
	The Virtual Layer - Mechatronics Concept Designer
	Base part and workpiece carrier
	Conveyor belt
	Mounting mechanism - latches
	Mounting Mechanism - Cylinders (Latch Cylinders and Stopper Cylinder)
	Sensing Mechanism - Entry and Exit Sensors

	The Physical Layer – PLC Program
	TIA Portal
	PLCSIM Advanced

	Controlling the MCD Application using the PLC Program

	Preparation: Station IMS4
	Goal
	Task
	Siemens NX MCD
	PLC Program

	Station IMS4: Practical Assignment
	Goal
	IMS4 Station Functionality
	The Virtual Layer - Mechatronics Concept Designer
	Top part, base part and workpiece carrier
	Conveyor belt
	Mounting mechanism - latches
	Mounting Mechanism - Cylinders (Latch Cylinders and Stopper Cylinder)
	Sensing Mechanism - Entry and Exit Sensors

	The Physical Layer – PLC Program
	TIA Portal
	PLCSIM Advanced

	Controlling the MCD Application using the PLC Program

	Preparation: Station IMS5
	Goal
	Task
	Siemens NX MCD
	PLC Program

	Station IMS5: Practical Assignment
	Goal
	IMS5 Station Functionality
	The Virtual Layer - Mechatronics Concept Designer
	Top part, base part, bolt, and workpiece carrier
	Conveyor belt
	Mounting Mechanism - Cylinders (Mounting Cylinder and Stopper Cylinder)
	Sensing Mechanism - Entry and Exit Sensors

	The Physical Layer – PLC Program
	TIA Portal
	PLCSIM Advanced

	Controlling the MCD Application using the PLC Program

	Preparation: Station IMS7
	Goal
	Task
	Siemens NX MCD
	PLC Program

	Station IMS7: Practical Assignment
	Goal
	IMS7 Station Functionality
	The Virtual Layer - Mechatronics Concept Designer
	Top part, base part, bolt, and workpiece carrier
	Conveyor belt
	Pick and place mechanism
	Sensing Mechanism - Entry and Exit Sensors

	The Physical Layer – PLC Program
	TIA Portal
	PLCSIM Advanced

	Controlling the MCD Application using the PLC Program

	Summary
	Troubleshooting
	OPC UA Communication Troubleshooting
	PLCSIM Advanced V2.0 Troubleshooting

	Operator Digital Twin for Assistance Systems
	Short Introduction to Digital Twins
	Digital Twins of Operators

	OEE Evaluation with Python
	Learning Outcome
	Requirements
	What you need
	Hardware
	Software

	Sources and Resources

	Task
	Setting up the work environment
	Understanding the work data
	Basic program structure
	Data preparation - Work data
	Base value calculation
	Cycle times
	Setpoints

	OEE calculation
	Work information per day
	OEE parameters per day

	Visualization
	OEE graph
	Scatter plot - cycle times

	Data evaluation
	Problem Solving
	Plotting
	The render backend does not work

	Digital Twin of a Robot Dog
	Short Introduction to Digital Twins
	Creating a Digital Twin for a Robotic Dog

	Bittle
	Learning Outcome
	Introduction
	Requirements
	What you need
	Hardware
	Software

	Sources and Resources

	Workspace Setup
	Visual Studio Code
	Arduino IDE Extension
	Version control using Git and GitLab
	Node-RED
	Everything ready?

	Hardware Setup
	Pre-assembled kit
	Base kit

	Bittle Body
	Electrical and Controller Properties
	Main Board
	Specifications
	Board interface
	Board power supply

	Servos
	Battery
	Battery Status

	Calibration
	Using Mobile App
	Using Desktop App
	Using Serial Monitor

	Controlling Bittle
	Using IR Remote
	Using Mobile App
	Using IDE
	Using Desktop App
	Using Python Scripts

	Extensible Modules
	Sensors and Actuators
	Communication Modules
	USB Adaptor
	Bluetooth Adaptor
	WiFi Adaptor

	Imaging Module

	Serial Commands Cheat Sheet
	Tasks
	Connections
	Task 1
	Task 2
	Final Task

	Teach Bittle New Skills
	Understand skills in InstinctBittle.h.
	Example InstinctBittle.h
	Defined constants
	Data structure of skill array
	Suffix for indicating Instinct and Newbility

	Define new skills and behaviors
	Modify the existing skill template
	Add more skills in InstinctBittle.h
	Automation

	Understand OpenCat.h
	Tutorial on Creating New Skills
	Preparation
	Understand the format of a posture
	Explain expected body orientations
	Explain angle ratio
	Understand the format of a gait
	Understand the format of a behavior
	Understand the memory structure
	Create a new behavior
	Tune skills in realtime

	Controlling Bittle (Advanced)
	Using WiFi Adaptor
	Using Python Scripts
	Creating New Skills

	Controlling Bittle (Codecraft)
	Introduction
	Upload Code
	Monitor Serial Values

	Programming with Blocks
	Block Shapes
	Basics
	Variables
	My Blocks

	IR-Remote Control
	Advanced Control
	Custom Skills

	Example Block Codes
	References

	Problem Solving
	Buzzer Sounds
	Download Base Firmware
	Install Base Firmware
	Problem Loading Base Firmware
	Problem Uploading Program
	Problem with Device COM Port
	Problem with Serial Port Permission
	Individual Module Test
	Problem with Python Packages
	Problem Uploading on ESP32 Camera

	Der Roboterhund Bittle 🐕
	Learning Outcome
	Einführung
	Was du dafür brauchst
	Hardware
	Software

	Einführung
	Grundlagen von Robotern und Programmierung
	Programmierung
	Roboter mit PC verbinden
	Programmierung mit Bausteinen:
	Blockformen

	Katalog 📚

	Tasks
	Aufgabe 1 👩‍🏭 - Erste Tests
	Aufgabe 2 - Lassen Sie den Hund laufen
	Aufgabe 3 - Steuere den Hund mit der Fernbedienung. 👩‍🏭

	Weitere Informationen zu Bittle
	Additional Tasks
	Aufgabe 4 🎮 - Programmiere eine Fernbedienung, um die Bewegung des Hundes zu steuern.
	Aufgabe 5 - Roboterübung 🧘‍♂️
	Aufgabe 6 - Digitaler Zwilling

	Arduino Basics
	Introduction
	Embedded Systems
	Difference between Universal Computers and Embedded Systems:
	Software Development

	Programming in C
	Variables
	Operators
	Decision Making
	Loops
	Functions
	Arrays
	Pointers
	Strings
	Structures

	Arduino Programming
	Difference between Arduino and conventional C
	Arduino vs. Microcontroller Programming
	Arduino basic commands

	Getting started with Arduino IDE
	Simple GUI with only a few Menus and Buttons
	Managed and unmanaged Libraries
	Serial monitor and Serial plotter
	Examples
	Arduino Basic functions

	Problem Solving
	Arduino

	TIA Portal Basics
	Learning Outcome
	Introduction
	Requirements
	What you need
	Software

	TIA Portal
	Programming Blocks
	Creating a new function block
	Using Predefined Functions
	Watch and Force Tables
	Deep Dive: Watch vs Force Tables
	Creating Watch Tables

	Timers
	Monitoring runtime values

	TIA OPC-UA
	Configuring OPC-UA server in TIA Portal
	Creating OPC-UA Server Interface

	PLCSIM Advanced
	Setting up simulation support in TIA Portal
	Launching PLCSIM Advanced and creating a PLC instance
	Deep Dive: PLCSIM vs PLCSIM Advanced
	Summary

	OPC-UA client
	Prosys OPC-UA Browser

	PLC-Basics
	Information processing
	PLC Programming (IEC 61131)
	Controller configuration and resources
	Tasks
	Program Organization Units (POUs)
	Variables

	Programming languages (IEC 61131)
	Structured Control Language (SCL)
	Ladder Diagram (LAD)
	Function Block Diagram (FBD)
	Additional languages
	Examples
	SCL

	Sources

	Siemens NX MCD
	Learning Outcome
	Virtual Commissioning
	Mechatronics Concept Designer
	Siemens NX General Actions
	Modelling with MCD
	Rigid Bodies
	Collision Bodies
	Collision Sensors
	Joints
	Position Controls
	Signals

	OPC UA and Signal Mapping
	Operations
	A Note on Assembly Hierarchy

	Summary

	Node Red Basics
	Learning Outcome
	Introduction
	Requirements
	What you need
	Hardware
	Software

	General information
	Start/Stop Commands
	About
	Help

	Nodes
	Flows
	Messages
	Information and Debug
	Information
	Debug

	Palette Manager
	Functions
	Tasks
	Task 1
	Task 1.1
	Task 1.2
	Task 1.3

	Task 2
	Task 3
	Task 4

	Visual Studio Code Basics
	Learning Outcome
	Introduction
	Requirements
	What you need
	Hardware
	Software
	References

	General information
	Interface
	Command Palette
	Saving Settings

	Gitlab Extension
	Arduino Extension

	Introduction to Version Control with Git
	Learning Outcome
	Introduction
	Requirements
	What you need
	Hardware
	Software
	References

	Introduction
	Workflow
	Commits
	Git Branches
	Merging and Merge conflicts
	Tags
	Rebase
	Git Interface
	Git Commands
	Tasks
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	References

